删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

同济大学化学科学与工程学院导师教师师资介绍简介-张鲁凝

本站小编 Free考研考试/2021-01-12

张鲁凝
张鲁凝 教授 博士生导师
联系电话:I58- OI8I- 5II9
Email:luningzhang@tongji.edu.cn
专业方向:分析化学
办公室:231
研究方向:微纳米尺度下化学分析
个人介绍
本研究组致力于发展微纳米尺度下光谱分析方法,结合物理学领域的声、光、热、电等方法,针对纳米颗粒、生物细胞、纳米膜等样品实现在纳米尺度下高效率、定向、定点地光子传送和信号采集。我们的研究内容包括基于激光非线性效应的单纳米颗粒成像、极端状态下的纳米材料光谱、基于纳米颗粒表面等离子体的传感方法、生物力学、以及光镊-光谱测量联用方法等。同时,我们承担了科技部重大仪器专项并且搭建了一套红外光解离谱-飞行时间质谱联用装置(IRMS),该仪器可以产生特定分子量的气相团簇并且得到其红外吸收光谱,从而同时获得分子量(质谱)和化学键(光谱)的信息,为研究新型团簇和化学价键结构提供了一种新的方法。
博士毕业于加州大学伯克利分校化学系,论文在非线性光学权威沈元壤(Yuen-Ron Shen) 教授指导下完成,副导师为光谱学家Richard Saykally教授。博士期间利用非线性激光光谱研究了几个代表性体系:对固体-液体界面电荷密度和分子排布的关系给出了光谱证据,研究了污染物在亲水、疏水界面的竞争吸附并提出了统一机理解释,率先考察了纳米材料-水界面的电荷密度、超疏水性和水分子氢键结构。研究结果为美国自然科学基金水处理系统中心WaterCAMPWS资助的主要成果之一。在斯坦福研究所博士后期间,参与完成美国宇航局NASA和美空军基础科学办公室AFOSR的两个材料科学项目,并完成一个石墨烯定向气相刻蚀的课题。于2012年进入同济大学化学系之前,曾担任西门子中国研究院创新研究员,负责应用领域的创新技术研发。具有丰富光谱分析研究经验和光谱仪器的设计搭建经验。
简历:
1998-2001 硕士,复旦大学。导师:秦启宗教授,周鸣飞教授。
2001-2008 博士,加州大学伯克利分校 U.C. Berkeley。导师:沈元壤 Yuen-Ron Shen。
2008.6-2010.9 博士后工作,斯坦福研究所 Stanford Research Institute (SRI International)。Jochen Marschall 研究组。
2010.9-2012.1 创新研究员 (Innovator),西门子中国分公司,西门子中国研究院(TTB, Technology-To-Business Center)。
2012- 至今 教授,博导,同济大学化学系。
.
课题组的网页:
http://pchem.weebly.com
.
代表科研论文:
At Tongji University:
1.Microsphere Assisted Superresolution Optical Imaging of Plasmonic Interaction between Gold Nanoparticles, Beibei Hou, Mengran Xie, Ruoyu He, Minbiao Ji, Sonja Trummer, Rainer H. Fink, Luning Zhang, Scientific Reports, 2017, 7: 13789. | DOI:10.1038/s41598-017-14193-3
2.Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe, Jingni Fu and Luning Zhang, Anal. Chem. 2018, 90, 1356?1362. | DOI: 10.1021/acs.analchem.7b04347
3.Probing pH difference between micellar solution and nanoscale water within common black film by fluorescent dye, Jingni Fu, Luning Zhang, Chem. Phys. 2018,504,1-7. | |https://doi.org/10.1016/j.chemphys.2018.02.013
4. Nanometer-Thick Newton Black Film for Selective Formaldehyde Gas Detection, Jingni Fu and Luning Zhang, Anal. Chem., 2018, 90 (13), 8080–8085. | DOI: 10.1021/acs.analchem.8b01254
5. Liquid microdroplet as an optical component to achieve imaging of 100nm nanostructures
on a far-field microscope, Beibei Hou and Luning Zhang, J. Opt. 20 (2018) 055606 (7pp). | https://doi.org/10.1088/2040-8986/aaba2d
6.Application of Starch Granules for Imaging Samples with Sub-Diffraction limit features. Kemin Ye, Beibei Hou, Luning Zhang (to be submitted).
7. Monitoring Chemical Composition and Reaction by Acoustic Signal from a Vibrating Microliter Droplet, Liming Zhang and Luning Zhang (to be submitted).
8.Interfacial Heat Transfer Between A Single Gold Nanoparticle and Gas Environment Probed by Photothermal Imaging, Xiangxiong Li, Qing Xi, Jun Zhou, Luning Zhang (to be submitted).
Before Tongji:
(1) Laboratory Investigation of the Active Nitridation of Graphite by Atomic Nitrogen. L. Zhang, D. A. Pejakovic, J. Marschall, D. Fletcher, J. Thermophysics and Heat Transfer, 2012, 26(1), 10-21.
https://www.aiaa.org/JournalDetail.aspx?id=3441
(2) Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics. L. Zhang, D. A. Pejakovic, J. Marschall, M. Gausch, J. Am. Ceram. Soc. 2011, 94, 2562-2570.
http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2011.04411.x/abstract
(3) Effect of pH on the water/alpha-sapphire (1-102) interface structure studied by Sum-Frequency Vibrational Spectroscopy. J. Sung, L. Zhang, C. S. Tian, G. A. Waychunas, Y. R. Shen, J. Phys. Chem. C 2011, 115, 13887.
http://pubs.acs.org/doi/abs/10.1021/jp**
(4) Surface Modification of Highly Oriented Pyrolytic Graphite by Reaction with Atomic Nitrogen at High Temperatures. L. Zhang, D. A. Pejakovic, B. Geng, J. Marschall, Applied Surface Science, 2011, 257, 5647-5656.
http://www.sciencedirect.com/science/article/pii/S0**1024
(5) Surface Structure of Protonated R-Sapphire (1-102) Studied by Sum-Frequency Vibrational Spectroscopy. J. Sung, L. Zhang, C. S. Tian, G. A. Waychunas, Y. R. Shen, J. Am. Chem. Soc. 2011, 133(1), 3846-3853.
http://pubs.acs.org/doi/abs/10.1021/ja104042u
(6) Nanoporous silica/Water Interfaces studied by Sum-Frequency Vibrational Spectroscopy. L. Zhang, C. S. Tian, Y. Wu, S. Singh, C. J. Brinker, M. A. Shannon, Y. R. Shen, J. Chem. Phys. 2009, 130, 154702.
http://jcp.aip.org/resource/1/jcpsa6/v130/i15/p154702_s1
(7) High-Temperature Hydroxylation of Alumina Crystalline Surfaces.
R. Chandrasekharan. L. Zhang, V. Ostroverkhov, S. Prakash, Y. Wu, Y. R. Shen, M. A. Shannon, Surface Science, 2008, 602, 1466.
http://www.sciencedirect.com/science/article/pii/S1064
(8) Structures and charging of a-Alumina(0001)/water Interfaces studied by Sum-Frequency Vibrational Spectroscopy. L. Zhang, C. S. Tian, G. A. Waychunas, Y. R. Shen, J. Am. Chem. Soc. 2008, 130, 7686.
http://pubs.acs.org/doi/abs/10.1021/ja**
(9) Competitive Molecular Adsorption at Liquid/Solid interfaces: A study by Sum-Frequency Vibrational Spectroscopy. L. Zhang, W. T. Liu, Y. R. Shen, D. G. Cahill, J. Phys. Chem. C 2007, 111(5), 2069.
http://pubs.acs.org/doi/abs/10.1021/jp063926n


相关话题/科学 工程学院