西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072
出版日期:
2019-05-28发布日期:
2019-05-28通讯作者:
孙惠斌,男,副教授,博士生导师,E-mail: Sun_huibin@nwpu.edu.cn.作者简介:
牛伟龙(1989-),男,山西省太原市人,博士生,主要研究方向为切削仿真建模、刀具磨损监测、机器学习、故障诊断等.基金资助:
国家自然科学基金资助项目(51875475),陕西省重点研发计划项目(2018ZDXM-GY-068)Predication of the Titanium Alloy’s Chip Morphology Based on TANH Constitutive Model and Smoothed Particle Hydrodynamic Method
NIU Weilong,MO Rong,SUN Huibin,HAN ZhoupengKey Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
Online:
2019-05-28Published:
2019-05-28摘要/Abstract
摘要: 引入TANH本构方程,建立了钛合金切削过程的光滑粒子流体动力学(SPH)方法的切削模型.新模型解决了基于有限元方法(FEM)的传统切削模型经常出现的网格畸变问题,另外利用控制变量法标定出TANH本构方程的修正系数.相较于传统的Johnson-Cook本构模型,该模型将材料的应变软化现象考虑在内,更加准确描述出钛合金在大应变和动态再结晶情况下材料的动态力学性能.同时,新模型很好解释了钛合金切削过程中锯齿形切屑的形成过程与形成机理.实验结果与模拟结果对比显示,基于SPH方法与TANH本构方程的切屑模型可以准确可靠地预测钛合金切屑形态与切削力.
关键词: TANH本构方程, 锯齿形切屑, 光滑粒子流体动力学(SPH), 钛合金
Abstract: By implementing a TANH constitutive equation, a cutting model is established with smoothed particle hydrodynamic (SPH) method to simulate the titanium alloy’s cutting process. The new model effectively avoids the element distortion problem which always occurs in the traditional cutting model based on the finite element method (FEM). Additionally, the correction parameters of TANH equation are calibrated with control variable method. Compared to the traditional Johnson-Cook constitutive model, the new model takes the strain softening into account, describes the dynamic mechanical properties of the material more accurately under a large strain condition and dynamic recrystallization mechanism. The new model also explains the formation and mechanism of saw-tooth chips very well in the cutting process of titanium alloy. Compared with experimental results, simulation results show the new cutting model predicts the chip morphology and cutting force accurately.
Key words: TANH constitutive equation, saw-tooth chips, smoothed particle hydrodynamic (SPH), titanium alloy
PDF全文下载地址:
点我下载PDF