删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于高通量测序对人胃癌组织长链非编码RNA差异表达的分析

本站小编 Free考研考试/2022-02-12

摘要/Abstract


摘要: 目的 ·为了探究胃癌的潜在机制,通过基因芯片技术对 3对胃癌新鲜组织及其邻近的正常组织进行了长链非编码 RNA(lncRNA)和 mRNA表达谱分析。方法 ·通过基因本体( GO)注释分析及京都基因和基因组百科全书( KEGG)通路富集分析,对差异表达的 lncRNA和 mRNA进行功能注释。此外,使用 MATLAB 2012b和 Cytoscape软件的超几何累积分布函数找到与其相应 mRNA的相关性,构建共表达网络。进一步使用定量反转录聚合酶链反应( qRT-PCR)在 30对胃癌新鲜组织中验证筛选的 5种关键 lncRNA的差异表达。结果 ·与正常癌旁组织相比,胃癌组织中发现异常表达的 1 499个 lncRNA和 6 002个 mRNA。qRT-PCR结果显示 5个关键 lncRNA与基因芯片数据相一致。此外,顺式调控基因分析显示了这些关键 lncRNA的染色体定位,揭示了与其相关的共表达基因。反式分析结果表明,有许多转录因子参与调节 lncRNA和基因表达。结论 ·这些胃癌组织中差异表达的 lncRNA可能作为新型的生物标志物,并为胃癌靶向治疗提供有价值的信息。
关键词: 胃癌, 长链非编码 RNA, 基因芯片
Abstract:
Objective · To explore the potential mechanisms of gastric cancer (GC), long noncoding RNA (lncRNA) and mRNA profiling of 3 paired GC fresh tissues and their matched adjacent non-cancerous tissues was detected through microarray analysis. Methods · The functions of differentially expressed lncRNA and mRNA were recognizedgene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The co- network was constructed to find the relevance with corresponding mRNAusing hypergeometric cumulative distribution function of MATLAB 2012b and Cytoscape software. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the of 5 differentially expressed key lncRNAs, which were selected in 30 paired GC fresh tissues. Results · Compared with normal tissues, 1 499 lncRNAs and 6 002 mRNAs were dysregulated in GC tissues. The qRT-PCR results showed that the 5 key lncRNAs were consistent with those the microarray data. Cis-regulatory gene analyses showed the chromosome location of these key lncRNAs, and revealed the associated co-expressed genes. The trans-analyses results demonstrated that enormous transcription factors regulated lncRNA and gene . Conclusion · These differentially expressed lncRNAs in GC may be promising biomarkers and provide valuable information for GC targeted treatment.
Key words: gastric cancer, long noncoding RNA, microarray


PDF全文下载地址:

点我下载PDF
相关话题/组织 基因 网络 信息 生物