删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学数学科学学院导师教师师资介绍简介-李从明

本站小编 Free考研考试/2021-01-02


李从明Congming Li
教授Professor

办公室??Office:
6 号楼 809
办公接待时间??Office Hour:

办公室电话??Office Phone:
**
E-mail:
congming.li at sjtu.edu.cn
教育背景??Education:
博士,1989,纽约大学
Ph.D., 1989, New York University

研究兴趣??Research Interests:
非线性偏微分方程,几何分析,变分法,流体力学
Nonlinear Partial Differential Equations, Geometric Analysis, Calculus of Variations, Dynamics of Fluids

教育背景/经历 Education
1985-1989库朗数学科学研究所,纽约大学Courant Institute, New York University
博士, 导师:Louis NirenbergPh.D. in Mathematics, Thesis Adviser: Louis Nirenberg
1982-1984中国科学院系统科学研究所Institute of System Sciences, CAS,
硕士,导师:丁夏畦 M.S. in Mathematics, Thesis Adviser: Xiaqi Ding
1978-1982中国科学技术大学University of Science and Technology of China
本科B.S. in Mathematics
工作经历 Work Experience
2018-Present上海交通大学Shanghai Jiao Tong University
讲席教授Chair Professor
1992-2018科罗拉多大学博尔得分校University of Colorado, Boulder
助理教授,副教授,教授Assistant, Associate, and Professor
2006-2007加州大学河滨分校University of California at Riverside
教授Professor
1991-1992普林斯顿高等研究院Institute for Advanced Study, Princeton
博士后Visiting member
1989-1991宾夕法尼亚大学University of Pennsylvania, Philadelphia
        博士后      Instructor 

PROFESSIONAL MEMBERSHIP & HONOR
Fellow of the American Mathematical Society, 2017

BOARD OF EDITORS
2012-present Discrete and Continuous Dynamics Systems A
2013-present Acta Mathematica Scientia
2003-2012 Communications on Pure & Applied Analysis

PUBLICATIONS
http://www.researcherid.com/rid/A-5275-2008
http://www.ams.org/mathscinet/mrcit/individ==ual.html?mrauthid=259914&seeall
http://scholar.google.com/citations?user=jufXPJYAAAAJ&hl=en
Recent Publications
1.W. Chen, C. Li, J. Zhu, Fractional equations with indefinite nonlinearities, Disc. Cont. Dyn. Syst. 39(2019), p1257-1268, DOI:10.3934/dcds.**
2.C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1565–1575, DOI:https://doi.org/10.1090/proc/14342
3.C. Li, Z. Wu and H. Xu, Maximum principles and Bocher type theorems, P. Natl. Acad. Sci. USA, 27(115), 2018, p6976-6979, DOI:https://doi.org/10.1073/pnas.
4.C. Li and Z. Wu, Radial symmetry for systems of fractional Laplacian, Acta Mathematica Scientia,5,38(2018), p1567-1582, doi.org/10.1016/S0252-9602(18)30832-4
5.W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math.7,335(2018), p735-758, Doi.org/10.1016/l.aim.2018.07.016
6.W. Chen, C. Li, G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calculus of Variations and Partial Differential Equations, 2(56), 2017, 18pages.DOI:10.1007/s00526-017-1110-3
7.T. Cheng, G. Huang, C. Li, the maximum principles for fractional Laplacian equations and their applications, Comm. Contemporary Math., 6, 19(2017). DOI:http://dx.doi.org/10.1142/S02**183
8.W. Chen, C. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308(2017), 404-437. DOI:http://dx.doi.org/10.1016/j.aim.2016.11.038
9.Z. Cheng, G. Huang, C. Li, On the Hardy-Littlewood-Sobolev type systems, Comm. Pure & Appl. Anal. 6, 15(2016), 2059-2074. DOI:10.3934/cpaa.**
10.C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. in Partial Differential Equations, 7, 41(2016), 1029-1039.DOI:10.1080/**.2016.**
11.L. Zhang, C. Li, W. Chen, T. Cheng, A Liouville theorem for $α$-harmonic functions in $R^n_+$. Disc. & Cont. Dynamics Systems, 3, 36(2016), 1721-1736.DOI:10.3934/dcds.2016.36.1721
12.W. Chen, C. Li, and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptical equations, International J. of Math., 8, 27(2016). DOI:10.1142/S**X**
13.Y. Lei, C. Li, A sharp criteria of Liouville type for some nonlinear systems, Disc. & Cont. Dynamics Systems, 6, 36(2016),DOI:http://dx.doi.org/10.3934/dcds.2016.36.xx
14.C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Society, 9, 144(2016), 3731-3740 ,DOI:https://doi.org/10.1090/proc/13166
15.G. Huang and C. Li, A Liouville theorem for high order degenerate elliptic equations, J. Diff. Equations, 258(2015), 1229-1251.DOI:10.1016/j.jde.2014.10.017
16.Z. Cheng and C. Li, Shooting method with sign-changing nonlinearity, nonlinear analysis: theory, methods & applications, 114(2015), 2-12. DOI:10.1016/j.na.2014.10.019
17.G. Huang, C. Li, and X. Yin, Existence of the extremal functions for the discrete Hardy-Littlewood-Sobolev Inequality, Disc. & Cont. Dynamics Systems, 3, 35(2015), p935-942. DOI:10.3934/dcds.2015.35.935
Older Publications
1.W. Chen, Y. Fang, C. Li, Super poly-harmonic property of solutions for Navier boundary problems on a half space, Journal of Functional Analysis 265 (2013), 1522-1555.DOI:10.1016/j.jfa.2013.06.010
2.W. Chen, C. Li, Method of moving planes in integral forms and regularity lifting. Recent developments in geometry and analysis, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville, MA, 2012. 35R11 (35-02 45G15), 27-62.
3.C. Ma, W. Chen, C. Li, Regularity of Solutions for an Integral System of Wolff Type, Adv. Math., 226(2011), 2676-2699. DOI:10.1016/j.aim.2010.07.020
4.T. Y. Hou, C. Li, Z. Shi, S. Wang, X. Yu, On singularity formation of a one-dimensional model for incompressible flows, Arch. Rational Mech. Anal. 199 (2011) 117–144.DOI:10.1007/s00205-010-0319-5
5.W. Chen, C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. #4, 29(2009), 949-960.DOI:10.1016/S0252-9602(09)60079-5
6.C. Li, L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. Math. Analysis, #3, 40(2008), 1049-1057.DOI:10.1137/
7.T. Hou, C. Li, “Dynamic stability of the 3D axisymmetric Navier-Stokes equations with swirl”, Comm. Pure Appl. Math., 61 (2008), no. 5, 661--697. DOI:10.1002/cpa.20212
8.C. Jin, X. Cai, C. Li, Parallel domain decomposition methods for some stochastic partial differential equations, SIAM J. of Sci. Comp., 2 (2007), 2096-2114.DOI:10.1137/
9.T. Y. Hou, C. Li, “On global well-posedness of the Lagrangian averaged Euler equations”, SIAM J. Math. Analysis, 38(3), 2006, 782-794. DOI:10.1137/
10.W. Chen, C. Li, and B. Ou, "Classification of solutions for an integral equation", Comm. Pure Appl. Math., #3, 59(2006), 330-343.DOI:10.1002/cpa.20116
11.H. Segur, D. Henderson, J. Carter, J. Hammack, C. Li, D. Pheiff, K. Socha, Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539(2005) 229-271. DOI:10.1017/S563X
12.W. Chen, C. Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math., 145(1997) 547-564.
13.C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math, 123(1996) 221-231.
14.W. Chen, C. Li, A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math., 48(1995) 657-667. DOI:10.1002/cpa.
15.W. Chen, C. Li, What kinds of singular surfaces can admit constant curvature, Duke Math. J., 78(1995) 437-451.DOI:10.1215/S0012-7094-95-07821-1
16.W. Chen, C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in R^2, Duke Math. J., 71(1993) 427-439.DOI:10.1215/S0012-7094-93-07117-7
17.C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm. in Partial Differential Equations, 16(2&3)(1991) 491-529. DOI:10.1080/20766
18.C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. in Partial Differential Equations, 16(4&5)(1991) 585-615. DOI:10.1080/20770


工科基地|学院工会|学院校友|联系我们
地址:上海市闵行区东川路800号理科群楼6号楼712??
电话:(86-21) **
传真:(86-21) **
Address:Room 712, N0.6 Science Buildings,
800 Dongchuan RD Shanghai, Minhang District
Shanghai 200240,China
Telephone:(+86-21) **
Fax:(+86-21) **
相关话题/上海交通大学 数学