摘要/Abstract
荧光成像凭借灵敏度高、特异性强等诸多优势在重大疾病的诊疗领域发挥着重要作用.然而传统的近红外一区(NIR-I,700~900 nm)荧光成像存在组织穿透性差等问题,限制了其临床应用.近红外二区(NIR-II,1000~1700 nm)荧光成像可以极大地减弱生物组织对光的吸收、散射和自发荧光,从而显著提升成像深度及成像效果.在众多NIR-II荧光探针中,有机小分子由于具有毒性低、代谢快等优点正成为该领域的研究热点.作者以近年来NIR-II有机小分子荧光探针的发展为主体,概括了提升探针荧光量子产率的策略,分别就可激活型、多模态成像型和诊疗一体化型NIR-II荧光探针进行分类讨论,系统介绍了近年来该领域内的研究成果,并针对NIR-II荧光探针未来的发展进行了展望.
关键词: 近红外二区荧光成像, 有机小分子, 可激活探针, 多模态成像, 光学治疗
Fluorescence imaging plays an important role in the diagnosis and treatment of major diseases by virtue of its high sensitivity, strong specificity and excellent spatio-temporal resolution. However, traditional near-infrared-I (NIR-I, 700~900 nm) fluorescence imaging often encounters multiple concerns such as poor tissue penetration, which limits its clinical application. In recent years, near-infrared-II (NIR-II, 1000~1700 nm) fluorescence imaging has been proven to provide better imaging qualities, higher signal-to-noise ratio and deeper tissue penetration than those observed in the NIR-I window due to the diminished photon scattering and tissue auto-fluorescence. Among NIR-II fluorescent probes, organic small molecules are becoming research hotspots in this field due to their advantages of low toxicity, simple structure and fast metabolism. This review describes the recent progress in the design of organic small molecule NIR-II probes and the strategies for improving the fluorescence quantum yield. The application of small molecule NIR-II probes in activatable imaging, multimode imaging and theranostics are evaluated systematically. Current challenges and future perspectives in this emerging field are also prospected.
Key words: near-infrared-II fluorescence imaging, organic small molecules, activatable probe, multimodal imaging, phototherapy
PDF全文下载地址:
点我下载PDF