摘要/Abstract
我国废水排放总量较大,且废水中含有的多种有机污染物一直是人类生命健康的潜在威胁,因此对废水处理的研究必不可少,而理解废水中有机污染物的降解机理是处理各种废水的基础.本综述概述了国内外针对各种有机污染物降解机理的研究方法,主要包括实验手段和计算模拟两大类.实验手段中主要采用光谱分析技术检测有机污染物降解过程中生成的中间产物,进而推测有机污染物的降解路径.但是由于实验条件和实验方法的不同,对于同种物质的降解机理研究,不同的实验结果存在着争议.基于量子化学计算、定量构效关系模型(QSAR)、定量结构-生物降解性能关系模型(QSBR)、统计分子碎化模型(SMF)等计算模拟方法为有机污染物降解机理的研究提供了新的方法.将实验手段和计算模拟有机结合起来,可为有机污染物的降解机理研究提供参考和指导.
关键词: 降解机理, 有机污染物, 研究方法, 光谱分析技术, 量子化学计算
The total discharge of Chinese industrial wastewater is large, and the various organic pollutants contained in wastewater have always been a potential threat to human health. Therefore, it is necessary to develop various technologies for wastewater treatment, especially to study the degradation mechanism of organic pollutants. This paper summarizes the research methods for the degradation mechanism of various organic pollutants in wastewater, including experimental methods and computational simulations. In the experiments, spectral analysis techniques are mainly used to detect the intermediates produced during the degradation of organic pollutants, and then the degradation pathways of organic pollutants are deduced. However, due to the different experimental conditions and experimental methods, the degradation pathways of the same pollutant obtained from the different experiments are controversial. Computational simulations, based on the quantum chemical calculation, quantitative structure-activity relationship model, quantitative structure-biodegradation relationship model and statistical molecular fragmentation model, provide a new method for studying the degradation mechanism of organic pollutants. The combination of experimental methods and computational simulations will provide the foundation and guidance for exploring the degradation mechanism of organic pollutants.
Key words: degradation mechanism, organic pollutants, research method, spectral analysis techniques, quantum chemical calculation
PDF全文下载地址:
点我下载PDF