导师姓名
段俊生
导师性别
男
职务职称
教授
所在院系
机械工程学院
一级学科
机械工程
二级学科
机械设计及理论
研究方向
非线性分析; 分数阶振动力学
联系电话
电子邮箱
duanjs@sit.edu.cn
个人简介
1965年生于呼和浩特。研究兴趣主要是非线性物理、力学模型的解析分析和数值模拟,分数阶微积分模型的解析分析和数值模拟。设计了非线性微分方程模型解析近似解的快速算法。建立了非线性常微分方程的高阶数值方法。设计的算法中,步长和阶是两个可人工指定的参数。进一步研究了自动变步长和变阶算法。应用提出的新方法,对非线性模型能给予更精确的分析。研究成果应用在梁形微纳米静电管的模型分析、热传导的非线性模型的理论分析等。
学习与工作经历
1982,9-1986,6内蒙古大学数学系读本科
1986,7-1999,8内蒙古工业大学理学院任教(1999年任副教授)
其中1993,9-1996,7内蒙古大学数学系硕士研究生
1999,9-2002,7山东大学数学学院博士研究生
2002,8-2009,4天津商业大学理学院任教(2005年任教授)
2009,5 至今,上海应用技术大学理学院任教(教授)
科研工作与成果
项目:
1. 国家自然基金青年项目:相对论流体力学Euler方程组的相关问题,No.**,2013,1-2015,12. 22万。(主持人:耿永才;第二参与人:段俊生)
2.上海市教育委员会科研创新重点项目:非线性分数阶微分方程的多级分解法,(No. 14ZZ161). 2014年1月至2016年12月,16万元。项目成员:段俊生,安玉莲,邱翔,罗纯,耿永才,卢磊,汪娜,陈炼。
3. 上海市自然科学基金:Emden-Fowler型非线性奇异常微分方程基于多级分解的高阶数值解研究;科委资助金额:10万元;2014-07-01 --- 2017-06-30。 (No. 14ZR**); 项目成员:段俊生,安玉莲,卢磊,耿永才,陈炼,李俊玲,黄灿。
2012---2016发表论文:
2016年:
[]C. Huang and J.-S. Duan, Steady-State Response to Periodic Excitation in Fractional Vibration System, Journal of Mechanics, 2016, volume 32, issue 01, pp. 25-33. DOI:http://dx.doi.org/10.1017/jmech.2015.89http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=**&fileId=S**00891 SCI;[]Junsheng Duan, Zongxue Li, Jinyuan Liu, Pull-in instability analyses for NEMS actuators with quartic shape approximation, Applied Mathematics and Mechanics, Volume 37,Issue3,pp 303-314. Doi:10.1007/s10483-015-2007-6https://link.springer.com/article/10.1007%2Fs10483-015-2007-6 SCI;2015年:
[]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Oxygen and carbon substrate concentrations in microbial floc particles by the Adomian decomposition method, MATCH Commun. Math. Comput. Chem. Volume 73 (2015) number 3,pp. 785-796. http://match.pmf.kg.ac.rs/content73n3.htm SCI
[]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method, Journal of Mathematical Chemistry, Volume 53, Issue 4 (2015), Page 1054-1067. DOI: 10.1007/s10910-014-0469-z. http://link.springer.com/article/10.1007/s10910-014-0469-z; SCI;
[]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method, Open Engineering, Volume 5, Issue 1, 59-74, 2015.
http://www.degruyter.com/view/j/eng.2015.5.issue-1/eng-2015-0007/eng-2015-0007.xml?format=INT;DOI: 10.1515/eng-2015-0007. SCI
[]Lei Lu, Junsheng Duan*, Longzhen Fan, Solution of the magnetohydrodynamics Jeffery-Hamel flow equations by the modified Adomian decomposition method, Advances in Applied Mathematics and Mechanics, Vol. 7, No. 5, pp. 675-686. 2015.
http://journals.cambridge.org/abstract_S00314 (*通讯作者)
DOI: 10.4208/aamm.2014.m543; SCI
[]Li-Li Liu, Jun-Sheng Duan*, A detailed analysis for the fundamental solution of fractional vibration equation, Open Mathematics, 2015, Volume 13, Issue 1, 826-838. DOI: 10.1515/math-2015-0077. *通讯作者
http://www.degruyter.com/view/j/math.2015.13.issue-1/math-2015-0077/math-2015-0077.xml?format=INTSCI
2014年:
[]Jun-Sheng Duan,Ai-Ping Guo,and Wen-Zai Yun, Similarity Solution for Fractional Diffusion Equation, Abstract and Applied Analysis, Volume2014(2014), Article ID548126, 5 pages. doi:10.1155/2014/548126; http://dx.doi.org/10.1155/2014/548126. SCI;
[]Jun-Sheng Duan, Xiang Qiu, The periodic solution of Stokes' second problem for viscoelastic fluids as characterized by a fractional constitutive equation, Journal of Non-Newtonian Fluid Mechanics, 205 (2014) 11-15.
Doi:10.1016/j.jnnfm.2014.01.001. http://dx.doi.org/10.1016/j.jnnfm.2014.01.001;SCI
[]Jun-Sheng Duan, Zhong Wang, Shou-Zhong Fu, The zeros of the solutions of the fractional oscillation equation, Fractional Calculus and Applied Analysis, Vol. 17, No 1 (2014), pp. 10-22. DOI: 10.2478/s13540-014-0152-x.
http://link.springer.com/article/10.2478/s13540-014-0152-x; SCI.
[]Jun-Sheng Duan, Shou-Zhong Fu, Zhong Wang, Fractional diffusion-wave equations on finite interval by Laplace transform, Integral Transforms and Special Functions, 2014, Vol.25, No. 3, 220-229.doi:10.1080/**.2013.838759.http://dx.doi.org/10.1080/**.2013.838759 SCI.
2013年:
[]Jun-Sheng Duan, Randolph Rach and Abdul-Majid Wazwaz, A new modified Adomian decomposition method for higher-order nonlinear dynamical systems, CMES: Computer Modeling in Engineering & Sciences, Vol. 94, No. 1, pp. 77-118, 2013. doi:10.3970/cmes.2013.094.077. http://www.techscience.com/cmes/2013/v94n1_index.html; SCI;
[]Jun-Sheng Duan, The periodic solution of fractional oscillation equation with periodic input, Advances in Mathematical Physics, Volume2013(2013), Article ID869484, 6 pages. doi: 10.1155/2013/869484. http://www.hindawi.com/journals/amp/2013/869484/ SCI;
[]Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Lei Lu, The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations, Computers and Mathematics with Applications, 2013,Volume 66, Issue 5,Pages 728-736. doi:10.1016/j.camwa.2013.01.019;
http://www.sciencedirect.com/science/article/pii/S0369 SCI.EI;
[]Jun-Sheng Duan, Zhong Wang, Shou-Zhong Fu, Temuer Chaolu, Parametrized temperature distribution and efficiency of convective straight fins with temperature-dependent thermal conductivity by a new modified decomposition method, International Journal of Heat and Mass Transfer, Vol. 59 (2013) 137-143. doi:10.1016/j.ijheatmasstransfer.2012.11.080;
http://www.sciencedirect.com/science/article/pii/S00**43XSCI. EI;
[]Jun-Sheng Duan, Randolph Rach, Shi-Ming Lin, Analytic approximation of the blow-up time for nonlinear differential equations by the ADM-Pade technique, Mathematical Methods in the Applied Sciences, 36 (13) (2013) 1790-1804. doi: 10.1002/mma.2725;
http://onlinelibrary.wiley.com/doi/10.1002/mma.2725/abstractSCI.
[]Jun-Sheng Duan, Zhong Wang, Yu-Lu Liu, Xiang Qiu, Eigenvalue problems for fractional ordinary differential equations, Chaos, Solitons & Fractals, Vol 46 (2013) 46-53. doi:10.1016/j.chaos.2012.11.004.
http://www.sciencedirect.com/science/article/pii/S2147 SCI.
[]Jun-Sheng Duan, Randolph Rach, Abdul-Majid Wazwaz, Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems, International Journal of Non-Linear Mechanics, Vol. 49 (2013) 159-169. doi:10.1016/j.ijnonlinmec.2012.10.003.
http://www.sciencedirect.com/science/article/pii/S1527 SCI. EI;
2012年:
[]Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Applied Mathematics and Computation, Vol. 218, Issue 17 (2012) 8370-8392. doi: 10.1016/j.amc.2012.01.063.
http://www.sciencedirect.com/science/article/pii/S1129SCI,EI.
[]Jun-Sheng Duan, Randolph Rach, Higher-order numeric Wazwaz-El-Sayed modified Adomian decomposition algorithms, Computers & Mathematics with Applications, Vol. 63, Issue 11 (2012) Pages 1557-1568. doi:10.1016/j.camwa.2012.03.050.
http://www.sciencedirect.com/science/article/pii/S2556SCI,EI.
会议邀请报告:
[1]Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, The Generalized Rach-Adomian-Meyers Modified Decomposition Method For Nonlinear Fractional Differential Equations, Program of the Fifth Symposium on Fractional Differentiation and Its Applications (第五届国际自动控制联合会分数阶导数及其应用会议),
[2]Jun-Sheng Duan, Pull-in parameter analysis for the cantilever NEMS actuator considering fringing field and Casimir effects, Proceedings of the 2015 International Conference on Mechanics and Mechatronics, 2015年3月13-15日长沙国际会议, World Scientific, 251-258.
[3]Duan Junsheng,Wang Zhong,Fu Shouzhong,The Stationary Periodic Solution of Fractional Oscillation Equation with Periodic Input, 中国力学大会-2013论文摘要集,19-21, Aug, 2013,中国陕西西安. 主办单位:中国力学学会、西安交通大学。
[4]The 4th International Conference on Dynamics, Vibration and Control (ICDVC-2014), August, 23-25, 2014, Shanghai. Organizer: Shanghai Institute of Applied Mathematics and Mechanics.
报告论文:Jun-Sheng Duan, Resonance in fractional vibration system.
[5]Jun-Sheng DUAN, Li-Li LIU, Can HUANG, Analytic Approximate Solutions for Nonlinear MEMS Fixed-Fixed Beam Actuator by a New Modified Adomian Decomposition Method, April 11-12, 2015, Nanjing, China. 2015 International Conference on Mechanics and Control Engineering (MCE 2015) ISBN: 978-1-60595-219-2. Pp. 253-258.
主要研究方向
非线性分析;分数阶模型分析;非线性微分方程模型