删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华东理工大学化学与分子工程学院导师教师师资介绍简介-刘劲刚

本站小编 Free考研考试/2021-01-16

刘劲刚





刘劲刚
校****、博士生导师、上海市高校****

招生专业: 无机化学(第二招生专业:应用化学)


联系方式:
Email: liujingang@ecust.edu.cn
电话:
办公地点:徐汇校区实验三楼315室


2000年6月毕业于中山大学,获理学博士学位(Ph.D.)。随后于同济大学化学系任教。2001年8月至2011年8月于日本九州大学先后任日本学术振兴会(JSPS)外国人特别研究员、学术研究员、特任准教授及WPI准教授。2011年9月起华东理工大学校****。先后入选“浦江人才计划”和“上海市高校****”。在J. Am. Chem. Soc., Angew Chem. Int. Ed.; Chem. Commun., Chem. Eur. J., Coord. Chem. Rev.等国内外期刊发表SCI收录论文六十余篇,论文总引用2300余次。无机化学博士点导师组组长。


研究领域: 生物无机化学
研究方向
(1)氧分子的活化还原与燃料电池仿生电催化剂。基于仿生催化原理设计不含贵金属的氧分子还原催化剂,作为新型电催化剂最终应用于燃料电池,实现化学能与电能的高效转换。

代表论文:
1.F.-F. Wang, Y.-M. Zhao, P.-J. Wei, Q.-L. Zhang and J.-G. Liu,* Efficient electrocatalytic O2 reduction at copper complexes grafted onto polyvinylimidazole coated carbon nanotubes, Chem. Commun. 2017,53, 1514–1517.
2.G.-Q. Yu, P.-J. Wei,* F.-F. Wang, and J.-G. Liu,* Doping Copper Ions into an Fe/N/C Composite Promotes Catalyst Performance for the Oxygen Reduction Reaction, ChemElectroChem 2017, 4, 1509-1515.
3.F.-F. Wang, P.-J. Wei, G.-Q. Yu and J.-G. Liu,* Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media, Chem. Eur. J. 2016, 22, 382–389 (hot paper).
4.W. Chen, M. Sin, P.-J. Wei, Q.-L. Zhang* and J.-G. Liu,* Synergistic Enhancement of Electrocatalytic Activity toward the Oxygen Reduction Reaction in Alkaline Electrolytes with Pentabasic (Fe, B, N, S, P)-Doped Reduced Graphene Oxide, Chin. J. Chem. 2016, 34, 878–886 (cover paper).
5.Y.-T. Xi, P.-J. Wei, R.-C. Wang and J.-G. Liu,* Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction, Chem. Commun. 2015, 51, 7455–7458.
6.T. Ohta,* J.-G. Liu,* P. Nagaraju, T. Ogura and Y. Naruta,* A cryo-generated ferrous–superoxo porphyrin: EPR, resonance Raman and DFT studies, Chem. Commun. 2015, 51, 12407–12410.
7.R.-C. Wang, T.-L. Yin, P.-J. Wei and J.-G. Liu,* A copper complex covalently grafted on carbon nanotubes and reduced graphene oxide promotes oxygen reduction reaction activity and catalyst stability, RSC Adv. 2015, 5, 66487–66493.
8.P.-J. Wei, G.-Q. Yu, Y. Naruta and J.-G. Liu,* Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions, Angew. Chem. Int. Ed. 2014, 53, 6659–6663.
9.J.-G. Liu, Y. Shimizu, T. Ohta and Y. Naruta*, “Formation of an End-On Ferric Peroxo Intermediate upon One-Electron Reduction of a Ferric Superoxo Heme”, J. Am. Chem. Soc. 2010, 132, 3672-3673.
10.J.-G. Liu, T. Ohta, S. Yamaguchi, T. Ogura, S. Sakamoto, Y. Maeda and Y. Naruta*, “Spectroscopic Characterization of a Hydroperoxo–Heme Intermediate: Conversion of a Side-On Peroxo to an End-On Hydroperoxo Complex”, Angew. Chem. Int. Ed. 2009, 48, 9262-9267. VIP paper. Highlighted by Nature 2010, 463, 168-169; Angew.Chem. Int. Ed. 2010, 49, 2099-2101.
11.J.-G. Liu, Y. Naruta* and F. Tani, “A Functional Model of the Cytochrome c Oxidase Active Site: Unique Conversion of a Heme–μ-peroxo–CuII Intermediate into Heme– superoxo/CuI”, Angew. Chem. Int. Ed. 2005, 44, 1836-1840.
12.J.-G. Liu, Y. Naruta* and F. Tani, “Synthetic Models of the Active Site of Cytochrome c Oxidase: Influence of a Tridentate or Tetradentate Copper Chelate Bearing a His-Tyr Linkage Mimic on Dioxygen Adduct Formation by Heme/Cu Complexes”, Chem. Eur. J. 2007, 13, 6365-6378.
13.J.-G. Liu, Y. Naruta*, F. Tani, T. Chishiro and Y. Tachi, “Formation and spectroscopic characterization of the dioxygen adduct of a heme–Cu complex possessing a cross-linked tyrosine–histidine mimic: modeling the active site of cytochrome c oxidase”, Chem. Commun. 2004, (1), 120-121.
14.Y. Nagano, J.-G. Liu, Y. Naruta,* T. Ikoma, S. Tero-Kubota, and T. Kitagawa*, “Characterization of the Phenoxyl Radical in Model Complexes for the CuB Site of Cytochrome c Oxidase: Steady-State and Transient Absorption Measurements, UV Resonance Raman Spectroscopy, EPR Spectroscopy, and DFT Calculations for MII-BIAIP”, J. Am. Chem. Soc. 2006, 128, 14560-14570.
15.T. Ohta*, J.-G. Liu, Y. Naruta, “Resonance Raman characterization of mononuclear heme-peroxo intermediate models”, Coord. Chem. Rev. 2013, 257, 407-413.

(2)无机纳米药物光控释放。研究无机药物(一氧化氮、一氧化碳、金属钌、铂配合物等)的光控释放及其抗肿瘤特性,构建具有靶向可控投递集诊断与治疗于一体的多功能无机纳米药物体系。


代表论文:
1.Y.-H. Li, M. Guo, S.-W. Shi, Q.-L. Zhang, S.-P. Yang, and J.-G. Liu,* Ruthenium-Nitrosyl-Functionalized Nanoplatform for the Targeting of Liver Cancer Cells and NIR-Light Controlled Delivery of Nitric Oxide Combined with Photothermal Therapy, J. Mater. Chem. B 2017, DOI: 10.1039/C7TB02059G.
2.M. Guo, H.-J. Xiang, Y. Wang, Q.-L. Zhang,* L. An, S.-P. Yang, Y. Ma, Y. Wang and J.-G. Liu,* Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy, Chem. Commun. 2017, 53, 3253–3256.
3.H.-J. Xiang, H. P. Tham, M. D. Nguyen, S. Z. F. Phua, W. Q. Lim, J.-G. Liu* and Y. L. Zhao,* An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells, Chem. Commun. 2017, 53, 5220-5223.
4.H.-J. Xiang, H. Chen, H. P. Tham, S. Z. F. Phua, J.-G. Liu*, and Y. Zhao*, Cyclometalated Iridium(III)-Complex-Based Micelles for Glutathione-Responsive Targeted Chemotherapy and Photodynamic Therapy, ACS Appl. Mater. Interfaces 2017, 9, 27553?27562.
5.H.-J. Xiang, M. Guo, and J.-G. Liu,* Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery, Eur. J. Inorg. Chem. 2017, 1586–1595 (review).
6.H.-J. Xiang, J.-G. Liu,* and Y. Zhao,* Recent Research Advancements of NO-Releasing Nanomaterials, Acta Phys. -Chim. Sin. 2017, 33 , 903–917(review).
7.H.-J. Xiang, Q. D., L. An, M. Guo, S.-P. Yang and J.-G. Liu,* Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light, Chem. Commun. 2016, 52, 148–151.
8.H.-J. Xiang, M. Guo, L. An, S.-P. Yang, Q.-L. Zhang* and J.-G. Liu,* A multifunctional nanoplatform for lysosome targeted delivery of nitric oxide and photothermal therapy under 808 nm near-infrared light, J. Mater. Chem. B 2016, 4, 4667–4674.
9.Q. Deng, H.-J. Xiang, W.-W. Tang, L. An, S.-P. Yang, Q.-L. Zhang and J.-G. Liu,* Ruthenium Nitrosyl Grafted Carbon Dots as a Fluorescence-Trackable Nanoplatform for Visible Light-Controlled Nitric Oxide Release and Targeted Intracellular Delivery, J. Inorg. Biochem. 2016, 165, 152–158.
10.H.-J. Xiang, L. An, W.-W. Tang, S.-P. Yang* and J.-G. Liu,* Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a fluorescence-trackable ruthenium nitrosyl functional nanoplatform, Chem. Commun. 2015, 51, 2555–2558.
11.X.-D. Yang, H.-J. Xiang, L. An, S.-P. Yang and J.-G. Liu,* Targeted delivery of photoactive diazido PtIV complexes conjugated with fluorescent carbon dots, New J. Chem. 2015, 39, 800–804.
(3) 二氧化碳的光催化转换。通过有机-无机复合光催化剂将CO2光催化转换成可利用的化工原料,阐明CO2光催化还原的过程和机理,实现太阳能的储存和转移。




代表论文:
1.W.-D. Wei, X.-Y. Liu, S.-C. Cui,* and J.-G. Liu,* Loading of Co3O4 onto Pt-modified Nitrogen-doped TiO2 Nanocomposites Promotes Photocatalytic Hydrogen Production, RSC Adv. 2017, 7, 25650–25656.
2.L. Liu, and J.-G. Liu,* “Encyclopedia of Physical Organic Chemistry”, 6 Volume Sets, Vol. 6, Chapter 70, Artificial Photosynthesis, pp3813–3884. Z. Wang, U. Wille, and E. Juaristi, Eds., Wiley, 2017.
3.S.-C. Cui, X.-Z. Sun, and J.-G. Liu,* Photo-reduction of CO2 Using a Rhenium Complex Covalently Supported on a Graphene/TiO2 Composite, ChemSusChem 2016, 13, 1698–1703.
4.X.-Y. Liu, W.-D. Wei, S.-C. Cui,* and J.-G. Liu,* A Heterojunction Cu2O/N–TiO2 Photocatalyst for Highly Efficient Visible Light-Driven Hydrogen Production, Catal. Lett. 2016, 146, 1655–1662.
5.P. Sun, L. Liu, S.-C. Cui, and J.-G. Liu,* Synthesis, Characterization of Ce-doped TiO2 Nanotubes with High Visible Light Photocatalytic Activity, Catal. Lett. 2014, 144, 2107–2113.










相关话题/工程学院 华东理工