删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华东师范大学精密光谱科学与技术国家重点实验室导师教师师资介绍简介-康司坦丁

本站小编 Free考研考试/2021-01-16

康司坦丁
精密光谱科学与技术国家重点实验室??????


导航
个人资料
研究方向
开授课程
科研项目
学术成果
荣誉及奖励







个人资料
部门: 精密光谱科学与技术国家重点实验室
毕业院校:
学位:
学历:
邮编:
联系电话:
传真:
电子邮箱: dorfmank@lps.ecnu.edu.cn
办公地址: 理科大楼A1206b
通讯地址: 中山北路3663号 精密光谱科学与技术国家重点实验室

教育经历

工作经历

个人简介

社会兼职


研究方向
More details at www.dorfmangroup.weebly.com


量子光学理论和光谱组

我们团队的研究方向主要是以下三个:

1. 对于复杂量子光场的研究

非线性光信号通常是用半经典的方法来计算,即假定量子系统与经典场相互作用。更有效的方法往往是用来“对于分子或半导体纳米结构的多维信号”的设计和解释。光的量子态给量子信息的处理提供了一个重要的工具,以及可靠的通讯和平版印刷。经典的光从根本上被时间频率的不确定性给限制住了,量子的光却没有。举个例子,纠缠态光子就有完全独立的时间和光谱特性,并且不受不确定性的制约。并且对于多光子过程的低强度要求使得它很理想地适用于在成像应用方面把损失降到最低。近期我们研制了一种技术,利用场的量子特性应用于分光镜的应用方面,并且可以分辨出物质的量子路径。现代量子技术利用量子场但通常用的是非常简单的物质模型(量子比特)我们研发了一种图表化的方法可以处理复杂的场与分之的相互作用的过程。不像半经典形式那样用麦克斯韦方程组来处理宏观信号模型,我们的方法是把整个过程用完全微观的计算来研究。
利用以上的形式我们规定了一种全新的脉冲推迟扫描协议,它是基于含有合适纠缠态光的多维光谱学的回路图来制定的,它提供了一种对于各种共振的高选择性的无背景测量的方法。我们又进一步利用纠缠态的光子来研究在一些复杂的生物分子如光合作用中心的分子,它们的激子的分布和动力学的量子控制。我们最近提出了一种微观理论,对于纠缠的产生(通过参量变换)和量子控制所遵从的光学或信息的协议,协议中包括水浴涨落。最后,我们把带有HBT效应的干涉测量法融入到光谱学中,以此来着重增强拉曼信号的分辨率和可选择性。纠缠光子源和超快光学装置的出现表明量子光的光谱学是目前物理学里的一个新兴领域,在这当中理论物理学家通过预测和引出新的实验来做出一个显著的贡献。


2. 电池、激光和生物学中的非线性响应和量子涨落。

在小系统的热力学特性中我们可以观察到各种量子效应,我们研究了量子相干和量子相互作用对于量子热机的稳定的和不稳定的状态中所起的作用,这种量子热机诸如激光器、光伏电池或光合作用的反应处。我们运用了一种与等离子设备相同的概念,我们已经证明量子热机可以把不相干的热能转化为谐振腔光子,它的最大能量可以通过控制量子相干来增强。我们还证明出了不管人工(如太阳能电池)还是自然(如光合作用)捕获光的相干性会影响同样的由流(如声子)所诱导的群体一致性的耦合项,在这种过程中并不需要相干光源,它是用来在太阳光刺激这种自然条件下为非相干激发而服务的。回收光复合物中的电荷分离会出现在细菌或植物里的一对紧密结合的叶绿素(一种特别的配对中)。我们证实了不论是群体振荡抑或是提高输出都基于一个共同的根源并且很有可能在典型参数方面二者同时具有。因此,对于量子相干的微观起源和量子相干在能量以及电荷转换过程以及微小系统的热力学特性中所起的作用,对于这些的理解于是乎就成为了AMO物理里的一个关键问题。我们进一步证明了量子相干是如何影响一般的量子热机的最大能特性的效率的。它对于研发新的光谱工具、给转运过程提供新的模型、设计有更高效性能的新光源这三个方面有更好的贡献提供了很好的契机。



3. 相干多维拉曼光谱学


激发态的分子的动力学在光物理过程中有着非常重要的作用,并且已经吸引了相当多的实验或者理论物理学家的关注。关于在复杂反应中原子重新组合的实时结构信息可以由时间分辨振动光谱学直接导出。通常在可见光或者紫外光中的一个极短的激光脉冲可以把分子激发到()的激发态,从而引发光反应或者非绝热衰减的过程。这种振荡的力可以由自发的或者受激的拉曼反映探测到。我们发现了导致这种现象的时间的和光谱的解的微观根源,研制了针对一些突出的零差或者外差检测的最佳方法。以及实现时域或者频域拉曼技术的方法。我们应用了三种仿真协议,这三种协议在多模核动力复杂性方面以及构成分成近似方面会有不同的变化。这些仿真协议的使用能进一步扩大到对于运动电荷的研究,以及从自然光到“电子从蛋白质到新物质的转移”中所产生了人工捕获光的应用。那些应用一组阿秒X射线激光脉冲的实验给分子价电子结构和比可见光更高分辨率的动力学研究打开了一扇新的大门。我们研究了由电子激发的时间演化叠加所造成的非线性光散射(NLS)的微观成因。我们进一步利用量子电动力学框架,确定了一种来自单一氨基酸分子(半胱氨酸)的X光衍射信号的可测量信息。我们还证明了实现在分子中通过阿秒拉曼脉冲序列产生相干控制电子转移的可能性。又进一步研制了一种新的光谱技术,针对“电子相干的锥形交叉检测”的无背景追踪。我们的理论和模拟能指导未来的对于纳米粒子和蛋白质结构试验研究。






开授课程


科研项目


学术成果

就业:

2017至今, 华东师范大学精密光谱学国家重点实验室教授, 中国上海。

2015至今, 加州大学欧文分校化学与物理与天文学系客座教授。

2015–2017科学家, 精密测量组, 新加坡制造技术研究所, 科学, 技术和研究机构 A * 星, 新加坡。

2012–2015高级研究科学家/博士后****, 加利福尼亚大学 (与 Shaul 教授 Mukamel), 欧文, CA。

2010–2012博士后研究员, 德克萨斯 A 和 M 大学 (与 Marlan 教授), 大学驻地, 得克萨斯州。

2010–2012访问博士后科学家, 普林斯顿大学 (与 Marlan 教授), 普林斯顿, 新泽西州。

教育:

2006-2009, 德州 A 和 M 大学物理博士, GPA-4.0。专业在原子, 分子物理和光学

2002-2006 下诺夫哥罗德哥罗德州立大学物理学士学位。专业的相对论电子学和太赫兹物理

出版物:


2018
51.P. Wei, M.Qin, K.E. Dorfman, X. Yuan1, C. Liu, Z. Zeng, X. Ge, X. Zhu, Q. Liang, B. Yao, Q. Wang, H. Li, J. Liu, Y. Zhang, S.Y. Jeong, G.S. Yun, D.E. Kim, P. Lu, and R. Li, "Probing electron-atom collision dynamics in gas plasma by high-order harmonic spectroscopy", Optics Letters 43, 1970 (2018)
50.K.E. Dorfman, D. Xu, J. Cao, "Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence", Phys. Rev. E, 97, 042120 (2018).
49.Z. Zhang, P. Saurabh, K.E. Dorfman, A. Debnath, and S. Mukamel, “Monitoring
polariton dynamics in the LHCII photosynthetic antenna in a microcavity by twophoton
coincidence counting”, J. Chem. Phys. 117, 074302 (2018).
48. K.E. Dorfman and S. Mukamel,“Multidimensional photon correlation spectroscopy
of cavity polaritons”, PNAS 115, 1451 (2018).






2017
47. M. Kowalewski, B.P. Fingerhut, K.E.Dorfman, K. Bennett, and S. Mukamel,
“Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular
Processes: From the Infrared to the X-ray Regime”, Chemical Reviews, 117, 12165(2017).

2016
46. K.E. Dorfman, Yu Zhang, and S. Mukamel, “Coherent Control of Long-range
Photoinduced Electron Transfer by Stimulated X-ray Raman Processes", PNAS,
113, 10001 (2016).
45. K.E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy
with quantum light”, accepted to Review of Modern Physics, 88, 045008
(2016).
44. K.E. Dorfman, S. Mukamel, “Time-and-frequency gated photon coincidence countingl
a novel multidimensional spectroscopy tool”, arXiv:1602.03241, Phys. Scr. 91,
083004 (2016). The article has been selected for the cover of Phys. Scr.
43. G. Fumero, G. Batignani, K.E. Dorfman, S. Mukamel, and T. Scopigno, “Probing
ultrafast processes by fifth order Stimulated Raman Scattering”, J. Phys.: Conf.
Ser. 689, 012023 (2016).
42. F. Schlawin, K.E. Dorfman, and S. Mukamel, “Pump-probe spectroscopy using
quantum light with two-photon coincidence detection”, Phys. Rev. A 93, 023807
(2016).

2015
41. G. Fumero, G. Batignani, K.E. Dorfman, S. Mukamel, and T. Scopigno, “On the
Resolution Limit of Femtosecond Stimulated Raman Spectroscopy: Modelling Fifth-
Order Signals with Overlapping Pulses”, Chem. Phys. Chem. 16, 3533 (2015).
40. M. Kowalewski, K. Bennett, K.E. Dorfman, and S. Mukamel, “Catching conical
intersections in the act: Monitoring transient electronic coherences by attosecond
stimulated X-ray Raman signals”, arXiv:1510.02997v1 [physics.chem-ph], Phys. Rev.
Lett. 115, 193003 (2015).
39. K.E. Dorfman, K. Bennett, and S. Mukamel, “Detecting electronic coherence by
multidimensional broadband stimulated X-ray Raman signals”, arXiv:1506.08226
[physics.chem-ph], Phys. Rev. A 92, 023826 (2015).
38. S. Mukamel, and K.E. Dorfman, “Nonlinear fluctuations and dissipation in matter
revealed by quantum light”, arXiv:1505.00894 [quant-ph], Phys. Rev. A 91, 053844
(2015).
37. B.K. Agarwalla, K.E. Dorfman, and S. Mukamel, “Evaluation of optical probe signals
from nonequilibrium systems”, arXiv:1503.08252 [quant-ph], Phys. Rev. A 91,
052501 (2015).
36. R. Glenn, K. Bennett, K.E. Dorfman, and S. Mukamel “Photon-Exchange Induces
Optical Nonlinearities in Harmonic Systems”, J. Phys. B: At. Mol. Opt. Phys. 48,
065401 (2015).
35. B.K. Agarwalla, H. Ando, K.E. Dorfman, and S. Mukamel, “Stochastic Liouville
equations for impulsive transient absorption and stimulated Raman spectroscopy”,
arXiv:1503.08387 [quant-ph], J. Chem. Phys. 142, 024115 (2015).

2014
34. Y. Zhang, J.D. Biggs, W. Hua, K.E. Dorfman, and S. Mukamel, “Three-Dimensional
Attosecond Resonant Stimulated X-Ray Raman Spectroscopy of Electronic Excitations
in Core-ionized Glycine”, Phys. Chem. Chem. Phys. 16, 24323 (2014).
33. H. Ando, B.P. Fingerhut, K.E. Dorfman, J.D. Biggs, and S. Mukamel “Femtosecond
stimulated Raman spectroscopy of the cyclobutane thymine dimer repair mechanism:
A computational study”, J. Am. Chem. Soc. 136, 14801 (2014).
32. K.E. Dorfman, F. Schlawin, and S. Mukamel “Stimulated Raman Spectroscopy with
Entangled Light: Enhanced Resolution and Pathway Selection”, arXiv:1407.3332
[quant-ph], The J. Phys. Chem. Lett. 5, 2843 (2014).
31. K. Bennett, J. D. Biggs, Y. Zhang, K.E. Dorfman, and S. Mukamel “Time-,
Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules”,
arXiv:1405.4039 [physics.chem-ph], J. Chem. Phys. 140, 204311 (2014).
30. K.E.Dorfman, and S. Mukamel “Multidimensional spectroscopy with entangled light;
loop vs ladder delay scanning protocols", arXiv: 1402.0496 [quant-ph], New Journal
of Physics 16, 033013 (2014)
29. K.E. Dorfman, and S. Mukamel “Indistinguishability and correlations of photons
generated by quantum emitters undergoing spectral diffusion”, Scientific Reports 4,
3996 (2014).
28. B.P. Fingerhut, K.E. Dorfman, and S. Mukamel “Probing the Conical Intersection
Dynamics of the RNA Base Uracil by UV-Pump Stimulated-Raman-Probe Signals;
Ab-Initio Simulations", J. Chem. Theory Comput. 10, 1172 (2014).

2013
27. K.E. Dorfman, B.P. Fingerhut, and S. Mukamel “Time-resolved broadband Raman
spectroscopies: A unified six-wave-mixing representation”, arXiv: 1305.5291[quantph],
J. Chem. Phys. 139, 124113 (2013).
26. K.E. Dorfman, P.K. Jha, D.V. Voronine, P. Genevet, F. Capasso, and M.O. Scully
“Quantum-Coherence-Enhanced Surface Plasmon Amplification by Stimulated Emission
of Radiation”, arXiv:1212.5237v2 [quant-ph], Physical Review Letters 111,
043601 (2013).
25. K.E. Dorfman, B.P. Fingerhut, and S. Mukamel “Broadband infrared and Raman
probes of excited-state vibrational molecular dynamics; Simulation protocols based
on loop diagrams”, arXiv: 1305.5291[quant-ph], Phys. Chem. Chem. Phys. 15,
12348 (2013).
24. K.E. Dorfman and S. Mukamel “Collective resonances in(3); a QED study”,
arXiv:1305.6994[quant-ph], Phys. Rev. A 87, 063831 (2013).
23. B.P. Fingerhut, K.E. Dorfman, and S. Mukamel “Monitoring Nonadiabatic Dynamics
of the RNA Base Uracil by UV Pump-IR Probe Spectroscopy”, The J. Phys. Chem.
Lett. 4, 1933 (2013).
22. K.E. Dorfman, K. Bennet, Y. Zhang, and S. Mukamel “Nonlinear light scattering
in molecules induced by impulsive X-ray Raman processes”, arXiv:1303.3550v2
[quant-ph], Phys. Rev. A 87, 053826 (2013).
21. F. Schlawin, K.E. Dorfman, B. Fingerhut, and S. Mukamel “Suppression of population
transport and control of exciton distributions in photosynthetic complexes by
entangled photons”, Nature Communications 4, 1782 (2013).
20. K.E. Dorfman, A.A. Svidzinsky and M.O. Scully “Increasing photovoltaic power
by noise induced coherence between intermediate band states”, Coherent Optical
Phenomena 1, pp. 42-49 (2013).
19. K.E. Dorfman, D.V. Voronine, S. Mukamel, and M.O. Scully “Photosynthetic
reaction center as a quantum heat engine”, PNAS, 110, 2746 (2013). The article
has been featured inPhysOrg News. See thecommentary articleby Peter
Nalbach and Michael Thorwart.

2012
18. A.A. Svidzinsky, K.E. Dorfman, and M.O. Scully, “Enhancing photocell power by
Fano induced coherence”, Coherent Optical Phenomena, 1, pp. 7-24 (2012).
17. K.E. Dorfman and S. Mukamel “Nonlinear spectroscopy with time- and frequencygated
photon counting; A superoperator diagrammatic approach”, Phys. Rev. A
86, 013810 (2012).
16. F. Schlawin, K.E. Dorfman, B. Fingerhut, and S. Mukamel “Manipulating twophoton
fluorescence spectra of chromophore aggregates with entangled photons: A
simulation study”, arXiv:1204.4490v1 [quant-ph]. Phys. Rev. A 86, 023851 (2012).
15. K.E. Dorfman and S. Mukamel “Photon counting in parametric down-conversion:
Interference of field-matter quantum pathways”, Phys. Rev. A 86, 023805 (2012).
14. P.K. Jha, K.E. Dorfman, Z. Yi, L. Yuan, V. Sautenkov, Y.V. Rostovtsev,
G.R. Welch, A.M. Zheltikov, and M.O. Scully, “Ultralow-power local laser
control of the dimer density in alkali-metal vapors through photodesorption”,
arXiv:1112.4115v1[physics.atom-ph], Applied Physics Letters, 101, 091107 (2012).
13. L. Yuan, K.E. Dorfman, A.M. Zheltikov, and M.O. Scully, “Plasma Assisted Coherent
Backscattering for Stand-off Spectroscopy”, Optics Letters 37, pp. 987-989 (2012).

2011
12. K.E. Dorfman, A.A. Svidzinsky, and M.O. Scully “Increasing Photocell Power by
Quantum Coherence Induced by External Source”, Phys. Rev. A 84, 053829 (2011).
11. A.A. Svidzinsky, K.E. Dorfman, and M.O. Scully, “Increasing photovoltaic power by
Fano induced coherence”, Phys. Rev. A 84, 053818 (2011).
10. E. Sete, K.E. Dorfman, and J.P. Dowling, “Phase-controlled entanglement in a
quantum-beat laser: application to quantum lithography”, J. Phys. B: At. Mol.
Opt. Phys. 44, 225504 (2011). The article has been selected for the cover of
J. Phys. B.
9. K.E. Dorfman, P.K. Jha, and S. Das, “Quantum-interference-controlled
resonance profiles from lasing without inversion to photo-detection”,
arXiv:1108.1567v1[physics.atom-ph], Phys. Rev. A 84, 053803 (2011).
8. M.O. Scully, K. Chapin, K.E. Dorfman, M. Kim, and A.A. Svidzinsky, “Quantum
Heat Engine Power Can be Increased by Noise Induced Coherence”, PNAS 108, pp.
15097-15100, (2011).The article has been featured inScienceNews.
7. L. Yuan, A.A. Lanin, P.K. Jha, A.J. Traverso, D.V. Voronine, K.E. Dorfman, A.B.
Fedotov, G.R. Welch, A.V. Sokolov, A.M. Zheltikov, and M.O. Scully, “Coherent
Raman Umklappscattering”, Laser Physics Letters,8, pp. 736-741, (2011).
6. K.E. Dorfman, M. Kim, and A.A. Svidzinsky, “Canonical statistics and thermodynamics
of weakly interacting Bose gas: Recursion relation approach”, Phys. Rev. A
83, 033609, (2011).

2009
5. K.E. Dorfman, “Modern problems in statistical physics of Bose-Einstein Condensation
and in electrodynamics of Free Electron Lasers”, Ph.D. thesis, Texas A&M
University, USA, (2009).
4. V.V. Kocharovsky, Vl.V. Kocharovsky, and K.E. Dorfman. “Origin and universal
structure of non-Gaussian statistics of Bose-Einstein condensate in a mesoscopic
perfect gas”, Radiophys. Quantum Electronics, vol.52, pp. 422-434, (2009).
3. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and A.S. Sergeev. “FEL amplifiers
based on planar Bragg waveguides”, PJTPh, No. 12, vol.35, pp. 9-17, (2009).

2007
2. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and A.S. Sergeev. “Open Planar Bragg
Waveguides for Mode Selection in Quantum and Classical Amplifiers”, Laser Physics,
No. 5, vol.17, pp. 665-671, (2007).
1. V.R. Baryshev, K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, N.Yu. Peskov, R.M.
Rozental, A.S. Sergeev, and V.Yu. Zaslavsky. “The use of planar Bragg structures
for generation and amplification of coherent radiation from spatially-extended
active media”, Izvestiya VUZ: Prikladnaya Nelineynaya Dinamika (Applied Nonlinear
Dynamics), vol.14, pp. 43-70, (2006), ISSN 0869-6632.


Selected Conference Proceedings
4. F. Schlawin, K.E. Dorfman, B.F. Fingerhut, and S. Mukamel. “Nonlinear Spectroscopy
of Chromophore Aggregates with Entangled Photon Pulses”, Proc. of the
XVIIIth International Conference on Ultrafast Phenomena In Ultrafast Phenomena
XVI, Editors, M. Chergui, S. Cundiff, E. Riedle and R. Schoenlein, (Springer-Verlag,
Berlin), 41, 12006 (2013).
3. K. Dorfman, K. Chapin, A. Svidzinsky, and M. Scully, “On Quantum Coherence
Effects in Photo and Solar Cells”, arXiv: 1012.5321.v2[physics.atom-ph] (2010).
Later revised version published as “Quantum Thermodynamics of Photo and Solar
Cells”, Second Law of Thermodynamics: Status and Challenges, AIP Conf. Proc.,
pp. 256-264 (2011).
2. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and R.M. Rozental. “Selective properties
of a planar Bragg waveguide”, Proc. of Joint 31st International Conference on
Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics,
p. 403, Shanghai, China, September 18-22 (2006).
1. K.E. Dorfman, N.S. Ginzburg, A.M. Malkin, and R.M. Rozental. “A FEL amplifier
based on planar Bragg waveguides”, Proc. of 28th International Free Electron Laser
Conference (FEL 2006), pp. 393-396, Berlin, Germany, Aug 27 - Sep 1 (2006).



荣誉及奖励


招生信息














10 访问


相关教师





相关话题/科学 光谱