删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

西南交通大学材料科学与工程学院导师教师师资介绍简介-胡春峰

本站小编 Free考研考试/2021-09-26


个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师

通讯/办公地址: 移动电话: 邮箱:




个人简介
胡春峰教授(https://www.researchgate.net/profile/Chunfeng_Hu4)一直探索研究结构陶瓷材料,着重于三元层状陶瓷的合成与性能评价。现为西南交通大学材料科学与工程学院教授,已经发表学术论文142篇,参与编写专著6部,授权国内外专利31项。


教育经历
暂无内容


研究方向
[1]航空航天用高温结构陶瓷
[2]新一代核能装置用结构陶瓷
[3]高速列车用先进陶瓷


工作经历
暂无内容


团队成员
尖端陶瓷研究实验室
团队介绍: 尖端陶瓷研究实验室归属于材料科学与工程学院,挂靠轨道交通国家实验室(筹)和材料先进技术教育部重点实验室。实验室的研究方向为面向高速轨道交通的先进陶瓷,新一代核能装置用陶瓷,及航空航天用高温结构陶瓷。实验室成员:胡春峰教授(负责人),Salvatore Grasso教授。





Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










科学研究 当前位置: 中文主页 >> 科学研究

论文成果
1. C. F. Hu, Y. W. Bao, and Y. C. Zhou, “The Energy-dissipation Mechanism of Ti3SiC2 Ceramic Investigated by Indentation,” Chin. J. Mater. Res., 19, 457-63 (2005).


2. Y. W. Bao, C. F. Hu, and Y. C. Zhou, “Damage Tolerance of Nanolayer-grained Ceramic: a Quantitative Estimation,” Mater. Sci. Technol., 22, 227-30 (2006).


3. C. F. Hu, Y. C. Zhou, Y. W. Bao, and D. T. Wan, “Tribological Properties of Polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 Composites,” J. Am. Ceram. Soc., 89, 3456-61 (2006).


4. C. F. Hu, Z. J. Lin, L. F. He, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In Situ Reaction Synthesis/Hot Pressing Method,” J. Am. Ceram. Soc., 90, 2542-8 (2007).


5. D. T. Wan, C. F. Hu, Y. W. Bao, and Y. C. Zhou, “Effect of SiC Particles on the Friction and Wear Behavior of Ti3Si(Al)C2-based Composites,” Wear, 262, 826-32 (2007).


6. D. T. Wan, Y. C. Zhou, C. F. Hu, and Y. W. Bao, “Improved Strength-impairing Contact Damage Resistance of Ti3Si(Al)C2/SiC Composites,” J. Eur. Ceram. Soc., 27, 2069-76 (2007).


7. C. F. Hu, F. Z. Li, J. Zhang, J. M. Wang, J. Y. Wang, and Y. C. Zhou, “Nb4AlC3: a New Compound Belonging to the MAX Phases,” Scripta Mater., 57, 893-6 (2007).


8. C. F. Hu, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “In Situ Reaction Synthesis and Decomposition of Ta2AlC,” Inter. J. Mater. Res., 99, 8-13 (2008).


9. C. F. Hu, Y. C. Zhou, and Y. W. Bao, “Material Removal and Surface Damage in EDM of Ti3SiC2 Ceramic,” Ceram. Inter., 34, 537-41 (2008).


10. C. F. Hu, J. Zhang, J. M. Wang, F. Z. Li, J. Y. Wang, and Y. C. Zhou, “Crystal Structure of V4AlC3, a New Layered Ternary Carbide,” J. Am. Ceram. Soc., 91, 636-9 (2008).


11. C. F. Hu, L. F. He, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Microstructure and Properties of Bulk Ta2AlC Ceramic Synthesized by an In Situ Reaction/Hot Pressing Method,” J. Eur. Ceram. Soc., 28, 1679-85 (2008).


12. C. F. Hu, F. Z. Li, L. F. He, M. Y. Liu, J. Zhang, J. M. Wang, Y. W. Bao, J. Y. Wang, and Y. C. Zhou, “In-situ Reaction Synthesis, Physical and Mechanical Properties of Nb4AlC3,” J. Am. Ceram. Soc., 91, 2258-63 (2008).


13. C. F. Hu, L. F. He, M. Y. Liu, X. H. Wang, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In Situ Reaction Synthesis and Mechanical Properties of V2AlC,” J. Am. Ceram. Soc., 91, 4029-35 (2008).


14. J. M. Wang, J. Y. Wang, Y. C. Zhou, and C. F. Hu, “Phase Stability, Electronic Structure and Mechanical Properties of Ternary-layered Carbide Nb4AlC3: an Ab Initio Study,” Acta Mater., 56, 1511-8 (2008).


15. J. Y. Wang, J. M. Wang, Y. C. Zhou, Z. J. Lin, and C. F. Hu, “Ab Initio Study of Polymorphism in Layered Ternary Carbide M4AlC3 (M = V, Nb and Ta),” Scripta Mater., 58, 1043-6 (2008).


16. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Low Temperature Thermal Expansion, High Temperature Electrical Conductivity, and Mechanical Properties of Nb4AlC3 Ceramic Synthesized by Spark Plasma Sintering,” J. Alloys Compd., 487, 675-81 (2009).


17. F. Z. Li, C. F. Hu, J. M. Wang, B. Liu, J. Y. Wang, and Y. C. Zhou, “Crystal Structure and Electronic Structure of a Novel Hf3AlN Ceramic,” J. Am. Ceram. Soc., 92, 476-80 (2009).


18. A. J. Li, C. F. Hu, M. S. Li, and Y. C. Zhou, “Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure,” J. Eur. Ceram. Soc., 29, 2619-25 (2009).


19. S. Grasso, Y. Sakka, G. Maizza, and C. F. Hu, “Pressure Effect on the Homogeneity of Spark Plasma Sintered Tungsten Carbide Powder,” J. Am. Ceram. Soc., 92, 2418-21 (2009).


20. W. Zhang, N. Travitzky, C. F. Hu, Y. C. Zhou, and P. Greil, “Reaction Hot Pressing and Properties of Nb2AlC,” J. Am. Ceram. Soc., 92, 2396-99 (2009).


21. S. Grasso, B. N. Kim, C. F. Hu, G. Maizza, and Y. Sakka, “Highly Transparent Pure Alumina Fabricated by High Pressure Spark Plasma Sintering,” J. Am. Ceram. Soc., 93, 2460-62 (2010).


22. C. F. Hu, L. F. He, F. Z. Li, L. Wu, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In-situ Reaction Synthesis and Mechanical Properties of TaC-TaSi2 Composites,” Int. J. Appl. Ceram. Technol., 7, 697-703 (2010).


23. C. F. Hu*, Y. Sakka, T. Uchikoshi, T. S. Suzuki, B. K. Jang, S. Grasso, and G. Suarez, “Synthesis, Microstructure and Mechanical Properties of ZrB2 Ceramic Prepared by Mechanical Alloying and Spark Plasma Sintering,” Key. Eng. Mater., 434-435, 165-68 (2010).


24. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Synthesis, Microstructure and Mechanical Properties of (Zr,Ti)B2-(Zr,Ti)N Composites Prepared by Spark Plasma Sintering,” J. Alloys Compd., 494, 266-70 (2010).


25. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC Composites Prepared by Spark Plasma Sintering Using TaSi2 as Sintering Additive,” J. Eur. Ceram. Soc., 30, 2625-31 (2010).


26. C. F. Hu, Y. Sakka, B. K. Jang, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC and HfB2-SiC Composites Fabricated by Spark Plasma Sintering (SPS) Using TaSi2 as Sintering Aid,” J. Ceram. Soc. Jpn., 118, 997-1001 (2010).


27. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Fabrication of Textured Nb4AlC3 Ceramic by Slip Casting in a Strong Magnetic Field and Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 410-5 (2011).


28. C. F. Hu, Y. Sakka, S. Grasso, T. Suzuki, and H. Tanaka, “Tailoring Ti3SiC2 Ceramic via a Strong Magnetic Field Alignment (SMFA) Method Followed by Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 742-8 (2011).


29. C. F. Hu, Y. Sakka, S. Grasso, T. Nishimura, S. Q. Guo, and H. Tanaka, “Shell-like Nanolayered Nb4AlC3 Ceramic with High Strength and Toughness,” Scripta Mater., 64, 765-8 (2011).


30. C. F. Hu, Y. Sakka, T. Nishimura, S. Q. Guo, S. Grasso, and H. Tanaka, “Physical and Mechanical Properties of Highly Textured Polycrystalline Nb4AlC3 Ceramic,” Sci. Technol. Adv. Mater., 12, 044603 (2011).


31. S. Grasso, C. F. Hu, G. Maizza, B. N. Kim, and Y. Sakka, “Effects of Pressure Application Method on Transparency of SPSed Alumina,” J. Am. Ceram. Soc., 94, 1405-9 (2011).


32. X. B. Zhou, Q. Huang, C. F. Hu, and Q. Z. Tao, “High Saturation Magnetization Carbon Nanotube-Ni0.5Zn0.5Fe2O4 Composite Fabricated by Microwave Sintering,” J. Kunming Univ. Sci. Tech., 36, 160-163 (2011).


33. S. Grasso, C. F. Hu, O. Vasylkiv, T. Suzuki, S. Q. Guo, T. Nishimura, and Y. Sakka, “High Hardness B4C Oriented via Strong Magnetic Field Technique,” Scripta Mater., 64, 256-9 (2011).


34. S. Grasso, Y. Sakka, N. Rendtorff, C. F. Hu, G. Maizza, H. Borodianska, and O. Vasylkiv, “Modeling of the Temperature Distribution of Flash Sintered Zirconia,” J. Ceram. Soc. Jpn., 119, 1-3 (2011).


35. S. Q. Guo, C. F. Hu, and Y. Kagawa, “Mechanochemical Processing of Nanocrystalline Zirconium Diboride Powder,” J. Am. Ceram. Soc., 94, 3643-7 (2011).


36. S. Grasso, C. F. Hu, G. Maizza, M. J. Reece, and Y. Sakka, “Spark Plasma Sintering of Diamond Binderless WC Composites,” J. Am. Ceram. Soc., 95, 2423-8 (2012).


37. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, H. Tanaka, J. Vleugels, and O. V. der Biest, “High-temperature Bending Strength, Internal Friction and Stiffness of ZrB2-20 vol.%SiC Ceramics,” J. Eur. Ceram. Soc., 32, 2519-27 (2012).


38. C. F. Hu, Y. Sakka, J. H. Gao, H. Tanaka, and S. Grasso, “Microstructure Characterization of ZrB2-SiC Composite Fabricated by Spark Plasma Sintering with TaSi2 Additive,” J. Eur. Ceram. Soc., 32, 1441-6 (2012).


39. C. F. Hu*, J. Zou, Q. Huang, G. J. Zhang, S. Q. Guo, and Y. Sakka, “Synthesis of Plate-like ZrB2 Grains,” J. Am. Ceram. Soc., 95, 85-8 (2012).


40. C. F. Hu*, Q. Huang, G. J. Zhang, and Y. Sakka, “Tailoring Plate-like Grained ZrB2 Ceramic via a Strong Magnetic Field Alignment Method Followed by Spark Plasma Sintering,” Key Eng. Mater., 512-515, 702-5 (2012).


41. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Dense Zircon (ZrSiO4) Ceramics by High Energy Ball Milling and Spark Plasma Sintering,” Ceram. Inter., 38, 1793-9 (2012).


42. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Zircon-zirconia (ZrSiO4-ZrO2) Dense Ceramic Composites by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 32, 787-93 (2012).


43. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, J. Vleugels, and O. V. der Biest, “Strong ZrB2-SiC-WC Ceramics at 1600oC,” J. Am. Ceram. Soc., 95, 874-8 (2012).


44. M. Mishra, Y. Sakka, C. F. Hu*, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Textured Ti3SiC2 by EPD in a Strong Magnetic Field,” Key Eng. Mater., 507, 15-9 (2012).


45. L. Shen, C. F. Hu, Y. Sakka, and Q. Huang, “Study of Phase Transformation Behaviour of Alumina through Precipitation Method,” J. Phys. D: Appl. Phys., 45, 215302 (2012).


46. M. Mishra, Y. Sakka, C. F. Hu, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Electrophoretic Deposition of Ti3SiC2 and Texture Development in a Strong Magnetic Field,” J. Am. Ceram. Soc., 95, 2857-62 (2012).


47. C. F. Hu*, H. B. Zhang, F. Z. Li, Q. Huang, and Y. W. Bao, “Review: New Phases’ Discovery in MAX Family,” Inter. J. Refra. Met. Hard Mater., 36, 300-12 (2013).


48. J. W. Zhang, C. F. Hu*, Y. G. Wang, and Q. Huang, “Interfacial Reactions between Polymer Derived SiC Fiber and Ti3Si(Al)C2,” Key Eng. Mater., 544, 238-44 (2013).


49. D. Qu, J. Hu, C. F. Hu*, Y. T. Wang, and L. Su, “Study on Performance of Ru-Ir-Ti/Ti Oxide Coating Anodes Prepared with Method of Surface Nitriding on Titanium,” Key Eng. Mater., 544, 87-91 (2013).


50. Z. Y. Pan, G. Y. Yang, Y. Lou, E. X. Xue, H. Z. Xu, X. G. Miao, J. L. Liu, C. F. Hu, and Q. Huang, “Morphology Control and Self-Setting Modification of a-Calcium Sulfate Hemihydrate Bone Cement by Addition of Ethanol,” Inter. J. Appl. Ceram. Technol., 10, E219-25 (2013).


51. Q. Wang, C. F. Hu*, S. Cai, Y. Sakka, and Q. Huang, “Synthesis of High Purity Ti3SiC2 Powder by Microwave Heating Method,” Inter. J. Appl. Ceram. Technol., 11, 911-8 (2014).


52. L. Shen, C. F. Hu, S. H. Zhou, A. Mukherjee, and Q. Huang, “Phase-dependent Photoluminescence Behavior of Cr-doped Alumina Phosphors,” Optical Mater., 35, 1268-72 (2013).


53. C. X. Wang, T. F. Yang, S. Y. Kong, J. R. Xiao, J. M. Xue, Q. Wang, C. F. Hu, Q. Huang, and Y. G. Wang, “Effect of He Irradiation on Ti3AlC2: Damage Evolution and Behavior of He Bubbles,” J. Nuclear Mater., 440, 606-11 (2013).


54. Q. Wang, S. Grasso, C. F. Hu*, H. B. Zhang, S. Cai, Y. Sakka, and Q. Huang, “Spark Plasma Sintering of Damage Tolerant and Machinable Y4Al2O9 Ceramic,” J. Adv. Ceram., 2, 193-200 (2013).


55. X. B. Zhou, L. Shen, L. Li, S. H. Zhou, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jing, J. Sun, L. Gao, and Q. Huang, “Microwave Sintering Carbon Nanotube/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance,” J. Eur. Ceram. Soc., 33, 2119-26 (2013).


56. X. B. Zhou, L. Shen, L. Li, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jin, J. Sun, L. Gao, and Q. Huang, “Preparation of Nanocrystalline-coated Carbon Nanotube/ Ni0.5Zn0.5Fe2O4 Composite with Excellent Electromagnetic Property as Microwave Absorber,” J. Phys. D: Appl. Phys., 46, 145002 (2013).


57. H. Porwal, P. Tatarko, S. Grasso, C. F. Hu, A. R. Boccaccini, I. Dlouhu, and M. Reece, “Toughened and Machinable Glass Matrix Composites Reinforced with Graphene and Graphene-oxide Nano Platelets,” Sci. Technol. Adv. Mater., 14, 055007 (2013).


58. Z. Y. Pan, Y. Lou, G. Y. Yang, X. Ni, M. C. Chen, H. Z. Xu, X. G. Miao, J. L. Liu, and C. F. Hu, “Preparation of Calcium Sulfate Dihydrate and Calcium Sulfate Hemihydrate with Controllable Crystal Morphology by Using Ethanol Additive,” Ceram. Inter., 39, 5495-5502 (2013).


59. B. W. Wei, D. Qu, C. F. Hu*, F. Z. Li, T. L. Zhou, R. J. Xie, and Z. M. Zhou, “Synthesis and Physical Properties of Graphene Reinforced Copper Composites,” Adv. Mater. Res., 833, 310-4 (2014).


60. D. Qu, F. Z. Li, H. B. Zhang, Q. Wang, T. L. Zhou, C. F. Hu*, and R. J. Xie, “Preparation of Graphene Nanosheet/copper Composite by Spark Plasma Sintering,” Adv. Mater. Res., 833, 276-9 (2014).


61. X. Q. Tang, H. B. Zhang, D. M. Du, D. Qu, C. F. Hu*, R. J. Xie, and Y. Feng, “Fabrication of W-Cu Functionally Graded Material (FGM) by Spark Plasma Sintering Method,” Inter. J. Refra. Met. Hard Mater., 42, 193-9 (2014).


62. S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. F. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, “Joining of β-SiC by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 34, 1681-6 (2014).


63. H. Barzegar Bafrooei, E. Taheri Nassaj, T. Ebadzadeh, and C. F. Hu, “Reaction Sintering of Nano-sized ZnO-Nb2O5 Powder Mixture: Sintering Behavior, Microstructure and Microwave Dielectric Properties,” J. Mater. Sci., 25, 1620-6 (2014).


64. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “A Comparative Study of ZnNb2O6 Nanoceramics Synthesized by High Energy Ball Milling and Subsequent Conventional and Microwave Annealing,” J. Mater. Sci., 25, 1770-7 (2014).


65. K. Sato, M. Mishra, H. Hirano, C. F. Hu, and Y. Sakka, “Pressureless Sintering and Reaction Mechanisms of Ti3SiC2 Ceramic,” J. Am. Ceram. Soc., 97, 1407-12 (2014).


66. Q. Z. Tao, C. F. Hu*, S. Lin, H. B. Zhang, F. Z. Li, D. Qu, M. L. Wu, Y. P. Sun, Y. Sakka, and M. W. Barsoum, “Coexistence of Ferromagnetic and Reentrant Cluster Glass State in the Layered (Cr1-xMnx)2GeC,” Mater. Res. Lett., 2, 192-8 (2014).


67. H. B. Zhang, C. F. Hu*, J. J. Lv, S. Grasso, M. Mishra, Y. Yamauchi, B. N. Kim, and Y. Sakka, “Microstructure and Adsorption Property of Nano Carbide-derived Carbon Synthesized at Ambient Temperature,” Mater. Lett., 130, 188-91 (2014).


68. B. Zhang, J. Yang, L. Yu, L. M. Pan, T. Qiu, and C. F. Hu, “Study on Mechanical Properties of NbC Reinforced Nb4AlC3 Composites Prepared by In Situ Hot-pressing Sintering,” J. Syn. Cryst., 5, 1144-8 (2014).


69. F. Z. Li, H. B. Zhang, Q. Wang, D. Qu, T. L. Zhou, B. N. Kim, Y. Sakka, C. F. Hu, and Q. Huang, “Microwave Sintering of Ti3Si(Al)C2 Ceramic,” J. Am. Ceram. Soc., 97, 2731-5 (2014).


70. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “Sintering Behavior and Microwave Dielectric Properties of Nano Zinc Niobate Powder,” Ceram. Inter., 40, 14463-70 (2014).


71. E. T. Nassaj, H. B. Bafrooei, C. F. Hu, and T. Ebadzadeh, “Microwave Sintering of Nanopowder ZnNb2O6: Densification, Microstructure and Microwave Dielectric Properties,” Phys. B, 454, 35-41 (2014).


72. H. B. Zhang, C. F. Hu*, K. Sato, S. Grasso, M. Estili, S. Q. Guo, K. Morita, H. Yoshida, T. Nishimura, T. S. Suzuki, B. N. Kim, and Y. Sakka, “Tailoring Ti3AlC2 Ceramic with High Anisotropic Physical and Mechanical Properties,” J. Eur. Ceram. Soc., 35, 393-7 (2014).


73. B. N. Kim, K. Hiraga, A. Jeong, C. F. Hu, T. S. Suzuki, J. D. Yun, and Y. Sakka, “Transparent ZnAl2O4 Ceramics Fabricated by Spark Plasma Sintering,” J. Ceram. Soc. Jpn., 122, 784-7 (2014).


74. B. R. Bian, J. H. He, J. Du, W. X. Xia, J. Zhang, J. P. Liu, W. Li, C. F. Hu, and A. R. Yan, “Growth Mechanism and Magnetic Properties of Monodisperse L10-Co(Fe)Pt@C Core–shell Nanoparticles by One-step Solid-phase Synthesis,” Nanoscale, 7, 975-80 (2015).


75. S. Q. Guo, C. F. Hu, H. Gao, Y. Tanaka, and Y. Kagawa, “SiC(SCS-6) Fiber-reinforced Ti3AlC2 Matrix Composites: Interfacial Characterization and Mechanical Behavior,” J. Eur. Ceram. Soc., 35, 1375-84 (2015).


76. T. B. Wang, C. C. Jin, J. Yang, C. F. Hu, and T. Qiu, “Physical and Mechanical Properties of Boron Nitride Ceramic Fabricated by Pressureless Sintering without Additive,” Adv. Appl. Ceram., 114, 273-6 (2015).


77. C. F. Hu*, B. N. Kim, Y. J. Park, M. Estili, S. Grasso, K. Morita, H. Yoshida, T. Nishimura, S. Q. Guo, and Y. Sakka, “Nano ZrO2-TiN Composites with High Strength and Conductivity,” J. Ceram. Soc. Jpn., 123, 86-9 (2015).


78. C. F. Hu*, B. N. Kim, Y. J. Park, K. Morita, H. Yoshida, S. Grasso, H. B. Zhang, S. Q. Guo, and Y. Sakka, “Microstructure and Mechanical Properties of Nano ZrO2-10 vol.% TiN Composite Fabricated by Spark Plasma Sintering,” J. Ceram. Proc. Res., 16, 1-6 (2015).


79. C. F. Hu, C. C. Lai, Q. Z. Tao, J. Lu, J. Halim, L. C. Sun, J. Zhang, J. Yang, B. Anasori, J. Y. Wang, Y. Sakka, L. Hultman, P. Eklund, J. Rosén, and M. W. Barsoum, “Mo2Ga2C: A New Ternary Nanolaminated Carbide,” Chem. Commun., 51, 6560-3 (2015).


80. H. Porwal, M. Estili, A. Grünewald, S. Grasso, R. Detsch, C. F. Hu, Y. Sakka, A. R. Boccaccini, and M. J. Reece, “45S5 Bioglass?-MWCNT Composite: Processing and Bioactivity,” J. Mater. Sci.-Mater. M., 26, 199 (2015).


81. C. F. Hu*, C. Li, J. Halim, S. Kota, D. Tallman, and M. W. Barsoum, “On the Rapid Synthesis of the Ternary Mo2GaC,” J. Am. Ceram. Soc., 98, 2713-5 (2015).


82. H. P. Ning, G. D. Mastrorillo, S. Grasso, B. L. Du, K. Simpson, T. Mori, C. F. Hu, Y. Xu, J. Tunbridge, G. Maizza, and M. J. Reece, “Enhanced Thermoelectric Performance of Porous Antimony Doped Magnesium Tin Silicide by Spark Plasma Sintering,” J. Mater. Chem. A., 3, 17426 (2015).


83. C. C. Jin, T. B. Wang, C. F. Hu, T. Liang, J. Yang, and T. Qiu, “Fabrication and Properties of AlN/BN Composite Ceramics by Hot-pressing Sintering,” J. Syn. Cryst., 44, 1591-6 (2015).


84. C. C. Jin, T. B. Wang, L. M. Pan, J. Yang, C. F. Hu, and T. Qiu, “Preparation and Properties of Sintering Additive-free AlN-BN Composite


Ceramics by Hot-pressing Sintering,” J. Mater. Sci: Mater. Electron, 27, 2014-21 (2016).


85. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, C. F. Hu, A. Sayyadi-Shahraki, and T. Kolodiazhnyi, “Sintering Behavior and Microwave Dielectric Characteristics of ZnTiNb2O8 Ceramics Achieved by Reaction Sintering of ZnO-TiO2-Nb2O5 Nanosized Powders,” Ceram. Inter., 42, 3296-3303 (2016).


86. J. Gu, L. M. Pan, L. Yu, H. B. Zhang, W. J. Zou, C. H. Xu, C. F. Hu, and T. Qiu, “Mechanical Properties and Oxidation Behavior of Ti-doped Nb4AlC3,” J. Eur. Ceram. Soc., 36, 1001-8 (2016).


87. P. Tatarko, V. Casalegno, C. F. Hu, M. Salvo, M. Ferraris, and M. J. Reece, “Joining of CVD-SiC Coated and Uncoated Fiber Reinforced Ceramic Matrix Composites with Pre-sintered Ti3SiC2 MAX Phase Using Spark Plasma Sintering,” J. Eur. Ceram. Soc., 36, 3957-67 (2016).


88. J. M. Zhou, D. G. Zhu, L. T. Tang, X. S. Jiang, S. Chen, X. Peng, and C. F. Hu, “Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing,” Vacuum, 131, 156-63 (2016).


89. C. Li, S. Kota, C. F. Hu, and M. W. Barsoum, “On the Synthesis of Low Cost, Ti-based MXenes,” J. Ceram. Sci. Technol., 7, 301-6 (2016).


90. C. F. Hu*, F. Shen, D. G. Zhu, H. B. Zhang, J. M. Xue, and X. G. Han, “Characteristics of Ti3C2X/Chitosan Films with Enhanced Mechanical Properties,” Frontiers in Energy Research, 4, 1-5 (2017).


91. O. Chaix-Pluchery, A. Thore, S. Kota, J. Halim, C. F. Hu, J. Rosen, T. Ouisse, and M. W. Barsoum, “First-order Raman Scattering in Three Layered Mo-based Ternaries: MoAlB, Mo2Ga2C and Mo2GaC,” J. Raman Spectro., 48, 631-8 (2017).


92. Y. L. Liu, D. G. Zhu, and C. F. Hu*, “Review of MAX Phases and Its Coating Fabricated by Spraying,” Adv. Ceram., 38, 21-8 (2017).


93. P. C. Guo, D. G. Zhu, Y. Gao, M. J. Li, and C. F. Hu, “Microstructure and Properties of CuCr Alloys Prepared by Hot Isostatic Pressing,” Electri. Eng. Mater., 4, 6-11 (2017).


94. L. D. Xu, D. G. Zhu, S. Grasso, T. S. Suzuki, A. Kasahara, M. Tosa, B. N. Kim, Y. Sakka, M. H. Zhu, and C. F. Hu*, “Effect of Texture Microstructure on Tribological Properties of Tailored Ti3AlC2 Ceramic,” J. Adv. Ceram., 6, 120-8 (2017).


95. Z. Lv, D. G. Zhu, H. Qian, L. D. Xu, and C. F. Hu, “Microstructure and Mechanical Properties of SiC-TiC Composites Fabricated by Hot Isostatic Pressing,” Powder Metall. Technol., 35, 163-70 (2017).


96. Y. H. Liu, B. R. Bian, C. F. Hu, P. P. Yi, J. Du, W. X. Xia, J. Zhang, A. R. Yan, Y. Li, and P. Liu, “Air Stable Fe Nanostructures with High Magnetization Prepared by Reductive Annealing,” J. Mater. Sci. Technol., 33, 1334-8 (2017).


97. J. M. Zhou, D. G. Zhu, H. W. Zhang, I. Bogomol, S. Grasso, and C. F. Hu*, “Microstructure and Indentation Damage Resistance of ZrB2-20vol.%SiC Ipo-eutectic Composites,” Inter. J. Appl. Ceram. Technol., 15, 619-24 (2018).


98. L. T. Tang, D. G. Zhu, Z. Sun, X. S. Jiang, T. F. Song, and C. F. Hu, “Microstructure and Mechanical Properties of Al-Ti-Zr Intermetallic Compounds Prepared by Vacuum Hot Pressing,” Vacuum, 150, 166-72 (2018).


99. L. D. Xu, D. G. Zhu, Y. L. Liu, T. S. Suzuki, B. N. Kim, Y. Sakka, S. Grasso, and C. F. Hu*, “Effect of Texture on Oxidation Resistance of Ti3AlC2,” J. Eur. Ceram. Soc., 38, 3417-23 (2018).


100. H. Qian, D. G. Zhu, C. F. Hu, and X. S. Jiang, “Effects of Zr Additive on Microstructure, Mechanical Properties, and Fractography of Al-Si Alloy,” Metals, 8, 124 (2018).
101. L. D. Xu, O. L. Shi, C. Y. Liu, D. G. Zhu, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Properties of MoAlB Ceramics,” Ceram. Inter., 44, 13396-401 (2018).
102. H. W. Zhang, D. G. Zhu, S. Grasso, and C. F. Hu*, “Tunable Morphology of Aluminum Oxide Whiskers Grown by Hydrothermal Method,” Ceram. Inter., 44, 14967-73 (2018).
103. Y. L. Liu, D. G. Zhu, S. Grasso, and C. F. Hu*, “Microstructure and Mechanical Properties of Gel Casted Ti3AlC2,” Ceram. Inter., 44,
23254-8 (2018).
104. J. J. Niu, H. B. Zhang, Y. Wu, C. F. Hu, and X. Wu, “Pressure-induced Reversible Phase Transition on Mo2Ga2C and Its Transformation Mechanism,” J. Appl. Phys., 124, 085903 (2018).


105. O. L. Shi, L. D. Xu, A. N. Jiang, Q. Xu, Y. T. Xiao, D. G. Zhu, S. Grasso, and C. F. Hu*, “Synthesis and Oxidation Resistance of MoAlB Single Crystals,” Ceram. Inter., 45, 2446-50 (2019).
106. M. Biesuz, J. Dong, S. Fu, Y. L. Liu, H. W. Zhang, D. G. Zhu, C. F. Hu*, and S. Grasso, “Thermally-insulated Flash Sintering,” Scripta Mater., 162, 99-102 (2019).
107. Z. Sun, W. Li, Y. L. Liu, H. W. Zhang, D. G. Zhu, H. L. Sun, C. F. Hu, and S. Chen, “Design and Preparation of A Novel Degradable Low-temperature Co-fired Ceramic (LTCC) Composites,” Ceram. Inter., 45, 7001-10 (2019).


108. M. Biesuz, R. Sedlák, T. Saunders, A. Koval?íková, J. Dusza, M. Reece, D. G. Zhu, C. F. Hu*, and S. Grasso, “Flash Spark Plasma Sintering of 3YSZ,” J. Eur. Ceram. Soc., 39, 1932-7 (2019).


109. Z. Zhang, S. Fu, F. Aversano, H. W. Zhang, C. F. Hu*, and S. Grasso, “Arc Melting: A Novel Method to Prepare Homogeneous Solid Solutions of Transition Metal Carbides (Zr, Ta, Hf),” Ceram. Inter., 45, 9316-9 (2019).


110. H. W. Zhang, D. D. Jayaseelan, I. Bogomol, M. J. Reece, C. F. Hu*, S. Grasso, and W. E. Lee, “A Novel Microstructural Design to Improve the Oxidation Resistance of ZrB2-SiC Ultra-high Temperature Ceramics (UHTCs),” J. Alloys Compd., 785, 958-64 (2019).


111. A. N. Jiang, L. D. Xu, D. Y. Ke, Q. Xu, J. Li, J. B. Wei, C. F. Hu*, and S. Grasso, “Cold Hydrostatic Sintering: From Shaping to 3D Printing,” J. Materio., /doi.org/10.1016/j.jmat.2019.02.009.


112. M. Biesuz, S. Fu, J. Dong, A. N. Jiang, D. Y. Ke, Q. Xu, D. G. Zhu, M. Bortolotti, M. Reece, C. F. Hu*, and S. Grasso, “High Entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x Perovskite by Reactive Spark Plasma Sintering,” J. Asian Ceram. Soc., 7, 127-32 (2019).




科研项目
1. 主持,国家自然科学基金联合基金 (U**), 强磁场织构化高强韧、抗辐照纳米层状类贝壳仿生结构陶瓷,60万,2013.01-2015.12。 (结题)
2. 主持,宁波自然科学基金(2013A610128),强磁场织构化纳米层状类贝壳仿生结构Ti3SiC2/Al2O3陶瓷复合材料的研究,4万,2013.01-2015.03。
(结题)
3. 主持,国家自然科学基金主任基金(**),新型双Ga/Sn/In层三元层状陶瓷的发现及构性关系研究,15万,2018.01-2018.12。 (结题)
4. 主持,四川省****基金(2019JDJQ0009),新型纳米层状陶瓷合成、结构设计及氦离子辐照损伤研究,40万,2019.1-2021.12。(在
研)




研究领域
暂无内容

专利
暂无内容

著作成果
暂无内容



Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果

1. C. F. Hu, Y. W. Bao, and Y. C. Zhou, “The Energy-dissipation Mechanism of Ti3SiC2 Ceramic Investigated by Indentation,” Chin. J. Mater. Res., 19, 457-63 (2005).


2. Y. W. Bao, C. F. Hu, and Y. C. Zhou, “Damage Tolerance of Nanolayer-grained Ceramic: a Quantitative Estimation,” Mater. Sci. Technol., 22, 227-30 (2006).


3. C. F. Hu, Y. C. Zhou, Y. W. Bao, and D. T. Wan, “Tribological Properties of Polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 Composites,” J. Am. Ceram. Soc., 89, 3456-61 (2006).


4. C. F. Hu, Z. J. Lin, L. F. He, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In Situ Reaction Synthesis/Hot Pressing Method,” J. Am. Ceram. Soc., 90, 2542-8 (2007).


5. D. T. Wan, C. F. Hu, Y. W. Bao, and Y. C. Zhou, “Effect of SiC Particles on the Friction and Wear Behavior of Ti3Si(Al)C2-based Composites,” Wear, 262, 826-32 (2007).


6. D. T. Wan, Y. C. Zhou, C. F. Hu, and Y. W. Bao, “Improved Strength-impairing Contact Damage Resistance of Ti3Si(Al)C2/SiC Composites,” J. Eur. Ceram. Soc., 27, 2069-76 (2007).


7. C. F. Hu, F. Z. Li, J. Zhang, J. M. Wang, J. Y. Wang, and Y. C. Zhou, “Nb4AlC3: a New Compound Belonging to the MAX Phases,” Scripta Mater., 57, 893-6 (2007).


8. C. F. Hu, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “In Situ Reaction Synthesis and Decomposition of Ta2AlC,” Inter. J. Mater. Res., 99, 8-13 (2008).


9. C. F. Hu, Y. C. Zhou, and Y. W. Bao, “Material Removal and Surface Damage in EDM of Ti3SiC2 Ceramic,” Ceram. Inter., 34, 537-41 (2008).


10. C. F. Hu, J. Zhang, J. M. Wang, F. Z. Li, J. Y. Wang, and Y. C. Zhou, “Crystal Structure of V4AlC3, a New Layered Ternary Carbide,” J. Am. Ceram. Soc., 91, 636-9 (2008).


11. C. F. Hu, L. F. He, J. Zhang, Y. W. Bao, J. Y. Wang, M. S. Li, and Y. C. Zhou, “Microstructure and Properties of Bulk Ta2AlC Ceramic Synthesized by an In Situ Reaction/Hot Pressing Method,” J. Eur. Ceram. Soc., 28, 1679-85 (2008).


12. C. F. Hu, F. Z. Li, L. F. He, M. Y. Liu, J. Zhang, J. M. Wang, Y. W. Bao, J. Y. Wang, and Y. C. Zhou, “In-situ Reaction Synthesis, Physical and Mechanical Properties of Nb4AlC3,” J. Am. Ceram. Soc., 91, 2258-63 (2008).


13. C. F. Hu, L. F. He, M. Y. Liu, X. H. Wang, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In Situ Reaction Synthesis and Mechanical Properties of V2AlC,” J. Am. Ceram. Soc., 91, 4029-35 (2008).


14. J. M. Wang, J. Y. Wang, Y. C. Zhou, and C. F. Hu, “Phase Stability, Electronic Structure and Mechanical Properties of Ternary-layered Carbide Nb4AlC3: an Ab Initio Study,” Acta Mater., 56, 1511-8 (2008).


15. J. Y. Wang, J. M. Wang, Y. C. Zhou, Z. J. Lin, and C. F. Hu, “Ab Initio Study of Polymorphism in Layered Ternary Carbide M4AlC3 (M = V, Nb and Ta),” Scripta Mater., 58, 1043-6 (2008).


16. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Low Temperature Thermal Expansion, High Temperature Electrical Conductivity, and Mechanical Properties of Nb4AlC3 Ceramic Synthesized by Spark Plasma Sintering,” J. Alloys Compd., 487, 675-81 (2009).


17. F. Z. Li, C. F. Hu, J. M. Wang, B. Liu, J. Y. Wang, and Y. C. Zhou, “Crystal Structure and Electronic Structure of a Novel Hf3AlN Ceramic,” J. Am. Ceram. Soc., 92, 476-80 (2009).


18. A. J. Li, C. F. Hu, M. S. Li, and Y. C. Zhou, “Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure,” J. Eur. Ceram. Soc., 29, 2619-25 (2009).


19. S. Grasso, Y. Sakka, G. Maizza, and C. F. Hu, “Pressure Effect on the Homogeneity of Spark Plasma Sintered Tungsten Carbide Powder,” J. Am. Ceram. Soc., 92, 2418-21 (2009).


20. W. Zhang, N. Travitzky, C. F. Hu, Y. C. Zhou, and P. Greil, “Reaction Hot Pressing and Properties of Nb2AlC,” J. Am. Ceram. Soc., 92, 2396-99 (2009).


21. S. Grasso, B. N. Kim, C. F. Hu, G. Maizza, and Y. Sakka, “Highly Transparent Pure Alumina Fabricated by High Pressure Spark Plasma Sintering,” J. Am. Ceram. Soc., 93, 2460-62 (2010).


22. C. F. Hu, L. F. He, F. Z. Li, L. Wu, J. Y. Wang, M. S. Li, Y. W. Bao, and Y. C. Zhou, “In-situ Reaction Synthesis and Mechanical Properties of TaC-TaSi2 Composites,” Int. J. Appl. Ceram. Technol., 7, 697-703 (2010).


23. C. F. Hu*, Y. Sakka, T. Uchikoshi, T. S. Suzuki, B. K. Jang, S. Grasso, and G. Suarez, “Synthesis, Microstructure and Mechanical Properties of ZrB2 Ceramic Prepared by Mechanical Alloying and Spark Plasma Sintering,” Key. Eng. Mater., 434-435, 165-68 (2010).


24. C. F. Hu*, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Synthesis, Microstructure and Mechanical Properties of (Zr,Ti)B2-(Zr,Ti)N Composites Prepared by Spark Plasma Sintering,” J. Alloys Compd., 494, 266-70 (2010).


25. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC Composites Prepared by Spark Plasma Sintering Using TaSi2 as Sintering Additive,” J. Eur. Ceram. Soc., 30, 2625-31 (2010).


26. C. F. Hu, Y. Sakka, B. K. Jang, H. Tanaka, T. Nishimura, S. Q. Guo, and S. Grasso, “Microstructure and Properties of ZrB2-SiC and HfB2-SiC Composites Fabricated by Spark Plasma Sintering (SPS) Using TaSi2 as Sintering Aid,” J. Ceram. Soc. Jpn., 118, 997-1001 (2010).


27. C. F. Hu, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso, “Fabrication of Textured Nb4AlC3 Ceramic by Slip Casting in a Strong Magnetic Field and Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 410-5 (2011).


28. C. F. Hu, Y. Sakka, S. Grasso, T. Suzuki, and H. Tanaka, “Tailoring Ti3SiC2 Ceramic via a Strong Magnetic Field Alignment (SMFA) Method Followed by Spark Plasma Sintering (SPS),” J. Am. Ceram. Soc., 94, 742-8 (2011).


29. C. F. Hu, Y. Sakka, S. Grasso, T. Nishimura, S. Q. Guo, and H. Tanaka, “Shell-like Nanolayered Nb4AlC3 Ceramic with High Strength and Toughness,” Scripta Mater., 64, 765-8 (2011).


30. C. F. Hu, Y. Sakka, T. Nishimura, S. Q. Guo, S. Grasso, and H. Tanaka, “Physical and Mechanical Properties of Highly Textured Polycrystalline Nb4AlC3 Ceramic,” Sci. Technol. Adv. Mater., 12, 044603 (2011).


31. S. Grasso, C. F. Hu, G. Maizza, B. N. Kim, and Y. Sakka, “Effects of Pressure Application Method on Transparency of SPSed Alumina,” J. Am. Ceram. Soc., 94, 1405-9 (2011).


32. X. B. Zhou, Q. Huang, C. F. Hu, and Q. Z. Tao, “High Saturation Magnetization Carbon Nanotube-Ni0.5Zn0.5Fe2O4 Composite Fabricated by Microwave Sintering,” J. Kunming Univ. Sci. Tech., 36, 160-163 (2011).


33. S. Grasso, C. F. Hu, O. Vasylkiv, T. Suzuki, S. Q. Guo, T. Nishimura, and Y. Sakka, “High Hardness B4C Oriented via Strong Magnetic Field Technique,” Scripta Mater., 64, 256-9 (2011).


34. S. Grasso, Y. Sakka, N. Rendtorff, C. F. Hu, G. Maizza, H. Borodianska, and O. Vasylkiv, “Modeling of the Temperature Distribution of Flash Sintered Zirconia,” J. Ceram. Soc. Jpn., 119, 1-3 (2011).


35. S. Q. Guo, C. F. Hu, and Y. Kagawa, “Mechanochemical Processing of Nanocrystalline Zirconium Diboride Powder,” J. Am. Ceram. Soc., 94, 3643-7 (2011).


36. S. Grasso, C. F. Hu, G. Maizza, M. J. Reece, and Y. Sakka, “Spark Plasma Sintering of Diamond Binderless WC Composites,” J. Am. Ceram. Soc., 95, 2423-8 (2012).


37. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, H. Tanaka, J. Vleugels, and O. V. der Biest, “High-temperature Bending Strength, Internal Friction and Stiffness of ZrB2-20 vol.%SiC Ceramics,” J. Eur. Ceram. Soc., 32, 2519-27 (2012).


38. C. F. Hu, Y. Sakka, J. H. Gao, H. Tanaka, and S. Grasso, “Microstructure Characterization of ZrB2-SiC Composite Fabricated by Spark Plasma Sintering with TaSi2 Additive,” J. Eur. Ceram. Soc., 32, 1441-6 (2012).


39. C. F. Hu*, J. Zou, Q. Huang, G. J. Zhang, S. Q. Guo, and Y. Sakka, “Synthesis of Plate-like ZrB2 Grains,” J. Am. Ceram. Soc., 95, 85-8 (2012).


40. C. F. Hu*, Q. Huang, G. J. Zhang, and Y. Sakka, “Tailoring Plate-like Grained ZrB2 Ceramic via a Strong Magnetic Field Alignment Method Followed by Spark Plasma Sintering,” Key Eng. Mater., 512-515, 702-5 (2012).


41. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Dense Zircon (ZrSiO4) Ceramics by High Energy Ball Milling and Spark Plasma Sintering,” Ceram. Inter., 38, 1793-9 (2012).


42. N. M. Rendtorff, S. Grasso, C. F. Hu, G. Suarez, E. F. Aglietti, and Y. Sakka, “Zircon-zirconia (ZrSiO4-ZrO2) Dense Ceramic Composites by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 32, 787-93 (2012).


43. J. Zou, G. J. Zhang, C. F. Hu, T. Nishimura, Y. Sakka, J. Vleugels, and O. V. der Biest, “Strong ZrB2-SiC-WC Ceramics at 1600oC,” J. Am. Ceram. Soc., 95, 874-8 (2012).


44. M. Mishra, Y. Sakka, C. F. Hu*, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Textured Ti3SiC2 by EPD in a Strong Magnetic Field,” Key Eng. Mater., 507, 15-9 (2012).


45. L. Shen, C. F. Hu, Y. Sakka, and Q. Huang, “Study of Phase Transformation Behaviour of Alumina through Precipitation Method,” J. Phys. D: Appl. Phys., 45, 215302 (2012).


46. M. Mishra, Y. Sakka, C. F. Hu, T. S. Suzuki, T. Uchikoshi, and L. Besra, “Electrophoretic Deposition of Ti3SiC2 and Texture Development in a Strong Magnetic Field,” J. Am. Ceram. Soc., 95, 2857-62 (2012).


47. C. F. Hu*, H. B. Zhang, F. Z. Li, Q. Huang, and Y. W. Bao, “Review: New Phases’ Discovery in MAX Family,” Inter. J. Refra. Met. Hard Mater., 36, 300-12 (2013).


48. J. W. Zhang, C. F. Hu*, Y. G. Wang, and Q. Huang, “Interfacial Reactions between Polymer Derived SiC Fiber and Ti3Si(Al)C2,” Key Eng. Mater., 544, 238-44 (2013).


49. D. Qu, J. Hu, C. F. Hu*, Y. T. Wang, and L. Su, “Study on Performance of Ru-Ir-Ti/Ti Oxide Coating Anodes Prepared with Method of Surface Nitriding on Titanium,” Key Eng. Mater., 544, 87-91 (2013).


50. Z. Y. Pan, G. Y. Yang, Y. Lou, E. X. Xue, H. Z. Xu, X. G. Miao, J. L. Liu, C. F. Hu, and Q. Huang, “Morphology Control and Self-Setting Modification of a-Calcium Sulfate Hemihydrate Bone Cement by Addition of Ethanol,” Inter. J. Appl. Ceram. Technol., 10, E219-25 (2013).


51. Q. Wang, C. F. Hu*, S. Cai, Y. Sakka, and Q. Huang, “Synthesis of High Purity Ti3SiC2 Powder by Microwave Heating Method,” Inter. J. Appl. Ceram. Technol., 11, 911-8 (2014).


52. L. Shen, C. F. Hu, S. H. Zhou, A. Mukherjee, and Q. Huang, “Phase-dependent Photoluminescence Behavior of Cr-doped Alumina Phosphors,” Optical Mater., 35, 1268-72 (2013).


53. C. X. Wang, T. F. Yang, S. Y. Kong, J. R. Xiao, J. M. Xue, Q. Wang, C. F. Hu, Q. Huang, and Y. G. Wang, “Effect of He Irradiation on Ti3AlC2: Damage Evolution and Behavior of He Bubbles,” J. Nuclear Mater., 440, 606-11 (2013).


54. Q. Wang, S. Grasso, C. F. Hu*, H. B. Zhang, S. Cai, Y. Sakka, and Q. Huang, “Spark Plasma Sintering of Damage Tolerant and Machinable Y4Al2O9 Ceramic,” J. Adv. Ceram., 2, 193-200 (2013).


55. X. B. Zhou, L. Shen, L. Li, S. H. Zhou, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jing, J. Sun, L. Gao, and Q. Huang, “Microwave Sintering Carbon Nanotube/Ni0.5Zn0.5Fe2O4 Composites and Their Electromagnetic Performance,” J. Eur. Ceram. Soc., 33, 2119-26 (2013).


56. X. B. Zhou, L. Shen, L. Li, T. M. Huang, C. F. Hu, W. M. Pan, X. H. Jin, J. Sun, L. Gao, and Q. Huang, “Preparation of Nanocrystalline-coated Carbon Nanotube/ Ni0.5Zn0.5Fe2O4 Composite with Excellent Electromagnetic Property as Microwave Absorber,” J. Phys. D: Appl. Phys., 46, 145002 (2013).


57. H. Porwal, P. Tatarko, S. Grasso, C. F. Hu, A. R. Boccaccini, I. Dlouhu, and M. Reece, “Toughened and Machinable Glass Matrix Composites Reinforced with Graphene and Graphene-oxide Nano Platelets,” Sci. Technol. Adv. Mater., 14, 055007 (2013).


58. Z. Y. Pan, Y. Lou, G. Y. Yang, X. Ni, M. C. Chen, H. Z. Xu, X. G. Miao, J. L. Liu, and C. F. Hu, “Preparation of Calcium Sulfate Dihydrate and Calcium Sulfate Hemihydrate with Controllable Crystal Morphology by Using Ethanol Additive,” Ceram. Inter., 39, 5495-5502 (2013).


59. B. W. Wei, D. Qu, C. F. Hu*, F. Z. Li, T. L. Zhou, R. J. Xie, and Z. M. Zhou, “Synthesis and Physical Properties of Graphene Reinforced Copper Composites,” Adv. Mater. Res., 833, 310-4 (2014).


60. D. Qu, F. Z. Li, H. B. Zhang, Q. Wang, T. L. Zhou, C. F. Hu*, and R. J. Xie, “Preparation of Graphene Nanosheet/copper Composite by Spark Plasma Sintering,” Adv. Mater. Res., 833, 276-9 (2014).


61. X. Q. Tang, H. B. Zhang, D. M. Du, D. Qu, C. F. Hu*, R. J. Xie, and Y. Feng, “Fabrication of W-Cu Functionally Graded Material (FGM) by Spark Plasma Sintering Method,” Inter. J. Refra. Met. Hard Mater., 42, 193-9 (2014).


62. S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. F. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, “Joining of β-SiC by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 34, 1681-6 (2014).


63. H. Barzegar Bafrooei, E. Taheri Nassaj, T. Ebadzadeh, and C. F. Hu, “Reaction Sintering of Nano-sized ZnO-Nb2O5 Powder Mixture: Sintering Behavior, Microstructure and Microwave Dielectric Properties,” J. Mater. Sci., 25, 1620-6 (2014).


64. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “A Comparative Study of ZnNb2O6 Nanoceramics Synthesized by High Energy Ball Milling and Subsequent Conventional and Microwave Annealing,” J. Mater. Sci., 25, 1770-7 (2014).


65. K. Sato, M. Mishra, H. Hirano, C. F. Hu, and Y. Sakka, “Pressureless Sintering and Reaction Mechanisms of Ti3SiC2 Ceramic,” J. Am. Ceram. Soc., 97, 1407-12 (2014).


66. Q. Z. Tao, C. F. Hu*, S. Lin, H. B. Zhang, F. Z. Li, D. Qu, M. L. Wu, Y. P. Sun, Y. Sakka, and M. W. Barsoum, “Coexistence of Ferromagnetic and Reentrant Cluster Glass State in the Layered (Cr1-xMnx)2GeC,” Mater. Res. Lett., 2, 192-8 (2014).


67. H. B. Zhang, C. F. Hu*, J. J. Lv, S. Grasso, M. Mishra, Y. Yamauchi, B. N. Kim, and Y. Sakka, “Microstructure and Adsorption Property of Nano Carbide-derived Carbon Synthesized at Ambient Temperature,” Mater. Lett., 130, 188-91 (2014).


68. B. Zhang, J. Yang, L. Yu, L. M. Pan, T. Qiu, and C. F. Hu, “Study on Mechanical Properties of NbC Reinforced Nb4AlC3 Composites Prepared by In Situ Hot-pressing Sintering,” J. Syn. Cryst., 5, 1144-8 (2014).


69. F. Z. Li, H. B. Zhang, Q. Wang, D. Qu, T. L. Zhou, B. N. Kim, Y. Sakka, C. F. Hu, and Q. Huang, “Microwave Sintering of Ti3Si(Al)C2 Ceramic,” J. Am. Ceram. Soc., 97, 2731-5 (2014).


70. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, and C. F. Hu, “Sintering Behavior and Microwave Dielectric Properties of Nano Zinc Niobate Powder,” Ceram. Inter., 40, 14463-70 (2014).


71. E. T. Nassaj, H. B. Bafrooei, C. F. Hu, and T. Ebadzadeh, “Microwave Sintering of Nanopowder ZnNb2O6: Densification, Microstructure and Microwave Dielectric Properties,” Phys. B, 454, 35-41 (2014).


72. H. B. Zhang, C. F. Hu*, K. Sato, S. Grasso, M. Estili, S. Q. Guo, K. Morita, H. Yoshida, T. Nishimura, T. S. Suzuki, B. N. Kim, and Y. Sakka, “Tailoring Ti3AlC2 Ceramic with High Anisotropic Physical and Mechanical Properties,” J. Eur. Ceram. Soc., 35, 393-7 (2014).


73. B. N. Kim, K. Hiraga, A. Jeong, C. F. Hu, T. S. Suzuki, J. D. Yun, and Y. Sakka, “Transparent ZnAl2O4 Ceramics Fabricated by Spark Plasma Sintering,” J. Ceram. Soc. Jpn., 122, 784-7 (2014).


74. B. R. Bian, J. H. He, J. Du, W. X. Xia, J. Zhang, J. P. Liu, W. Li, C. F. Hu, and A. R. Yan, “Growth Mechanism and Magnetic Properties of Monodisperse L10-Co(Fe)Pt@C Core–shell Nanoparticles by One-step Solid-phase Synthesis,” Nanoscale, 7, 975-80 (2015).


75. S. Q. Guo, C. F. Hu, H. Gao, Y. Tanaka, and Y. Kagawa, “SiC(SCS-6) Fiber-reinforced Ti3AlC2 Matrix Composites: Interfacial Characterization and Mechanical Behavior,” J. Eur. Ceram. Soc., 35, 1375-84 (2015).


76. T. B. Wang, C. C. Jin, J. Yang, C. F. Hu, and T. Qiu, “Physical and Mechanical Properties of Boron Nitride Ceramic Fabricated by Pressureless Sintering without Additive,” Adv. Appl. Ceram., 114, 273-6 (2015).


77. C. F. Hu*, B. N. Kim, Y. J. Park, M. Estili, S. Grasso, K. Morita, H. Yoshida, T. Nishimura, S. Q. Guo, and Y. Sakka, “Nano ZrO2-TiN Composites with High Strength and Conductivity,” J. Ceram. Soc. Jpn., 123, 86-9 (2015).


78. C. F. Hu*, B. N. Kim, Y. J. Park, K. Morita, H. Yoshida, S. Grasso, H. B. Zhang, S. Q. Guo, and Y. Sakka, “Microstructure and Mechanical Properties of Nano ZrO2-10 vol.% TiN Composite Fabricated by Spark Plasma Sintering,” J. Ceram. Proc. Res., 16, 1-6 (2015).


79. C. F. Hu, C. C. Lai, Q. Z. Tao, J. Lu, J. Halim, L. C. Sun, J. Zhang, J. Yang, B. Anasori, J. Y. Wang, Y. Sakka, L. Hultman, P. Eklund, J. Rosén, and M. W. Barsoum, “Mo2Ga2C: A New Ternary Nanolaminated Carbide,” Chem. Commun., 51, 6560-3 (2015).


80. H. Porwal, M. Estili, A. Grünewald, S. Grasso, R. Detsch, C. F. Hu, Y. Sakka, A. R. Boccaccini, and M. J. Reece, “45S5 Bioglass?-MWCNT Composite: Processing and Bioactivity,” J. Mater. Sci.-Mater. M., 26, 199 (2015).


81. C. F. Hu*, C. Li, J. Halim, S. Kota, D. Tallman, and M. W. Barsoum, “On the Rapid Synthesis of the Ternary Mo2GaC,” J. Am. Ceram. Soc., 98, 2713-5 (2015).


82. H. P. Ning, G. D. Mastrorillo, S. Grasso, B. L. Du, K. Simpson, T. Mori, C. F. Hu, Y. Xu, J. Tunbridge, G. Maizza, and M. J. Reece, “Enhanced Thermoelectric Performance of Porous Antimony Doped Magnesium Tin Silicide by Spark Plasma Sintering,” J. Mater. Chem. A., 3, 17426 (2015).


83. C. C. Jin, T. B. Wang, C. F. Hu, T. Liang, J. Yang, and T. Qiu, “Fabrication and Properties of AlN/BN Composite Ceramics by Hot-pressing Sintering,” J. Syn. Cryst., 44, 1591-6 (2015).


84. C. C. Jin, T. B. Wang, L. M. Pan, J. Yang, C. F. Hu, and T. Qiu, “Preparation and Properties of Sintering Additive-free AlN-BN Composite


Ceramics by Hot-pressing Sintering,” J. Mater. Sci: Mater. Electron, 27, 2014-21 (2016).


85. H. B. Bafrooei, E. T. Nassaj, T. Ebadzadeh, C. F. Hu, A. Sayyadi-Shahraki, and T. Kolodiazhnyi, “Sintering Behavior and Microwave Dielectric Characteristics of ZnTiNb2O8 Ceramics Achieved by Reaction Sintering of ZnO-TiO2-Nb2O5 Nanosized Powders,” Ceram. Inter., 42, 3296-3303 (2016).


86. J. Gu, L. M. Pan, L. Yu, H. B. Zhang, W. J. Zou, C. H. Xu, C. F. Hu, and T. Qiu, “Mechanical Properties and Oxidation Behavior of Ti-doped Nb4AlC3,” J. Eur. Ceram. Soc., 36, 1001-8 (2016).


87. P. Tatarko, V. Casalegno, C. F. Hu, M. Salvo, M. Ferraris, and M. J. Reece, “Joining of CVD-SiC Coated and Uncoated Fiber Reinforced Ceramic Matrix Composites with Pre-sintered Ti3SiC2 MAX Phase Using Spark Plasma Sintering,” J. Eur. Ceram. Soc., 36, 3957-67 (2016).


88. J. M. Zhou, D. G. Zhu, L. T. Tang, X. S. Jiang, S. Chen, X. Peng, and C. F. Hu, “Microstructure and Properties of Powder Metallurgy Cu-1%Cr-0.65%Zr Alloy Prepared by Hot Pressing,” Vacuum, 131, 156-63 (2016).


89. C. Li, S. Kota, C. F. Hu, and M. W. Barsoum, “On the Synthesis of Low Cost, Ti-based MXenes,” J. Ceram. Sci. Technol., 7, 301-6 (2016).


90. C. F. Hu*, F. Shen, D. G. Zhu, H. B. Zhang, J. M. Xue, and X. G. Han, “Characteristics of Ti3C2X/Chitosan Films with Enhanced Mechanical Properties,” Frontiers in Energy Research, 4, 1-5 (2017).


91. O. Chaix-Pluchery, A. Thore, S. Kota, J. Halim, C. F. Hu, J. Rosen, T. Ouisse, and M. W. Barsoum, “First-order Raman Scattering in Three Layered Mo-based Ternaries: MoAlB, Mo2Ga2C and Mo2GaC,” J. Raman Spectro., 48, 631-8 (2017).


92. Y. L. Liu, D. G. Zhu, and C. F. Hu*, “Review of MAX Phases and Its Coating Fabricated by Spraying,” Adv. Ceram., 38, 21-8 (2017).


93. P. C. Guo, D. G. Zhu, Y. Gao, M. J. Li, and C. F. Hu, “Microstructure and Properties of CuCr Alloys Prepared by Hot Isostatic Pressing,” Electri. Eng. Mater., 4, 6-11 (2017).


94. L. D. Xu, D. G. Zhu, S. Grasso, T. S. Suzuki, A. Kasahara, M. Tosa, B. N. Kim, Y. Sakka, M. H. Zhu, and C. F. Hu*, “Effect of Texture Microstructure on Tribological Properties of Tailored Ti3AlC2 Ceramic,” J. Adv. Ceram., 6, 120-8 (2017).


95. Z. Lv, D. G. Zhu, H. Qian, L. D. Xu, and C. F. Hu, “Microstructure and Mechanical Properties of SiC-TiC Composites Fabricated by Hot Isostatic Pressing,” Powder Metall. Technol., 35, 163-70 (2017).


96. Y. H. Liu, B. R. Bian, C. F. Hu, P. P. Yi, J. Du, W. X. Xia, J. Zhang, A. R. Yan, Y. Li, and P. Liu, “Air Stable Fe Nanostructures with High Magnetization Prepared by Reductive Annealing,” J. Mater. Sci. Technol., 33, 1334-8 (2017).


97. J. M. Zhou, D. G. Zhu, H. W. Zhang, I. Bogomol, S. Grasso, and C. F. Hu*, “Microstructure and Indentation Damage Resistance of ZrB2-20vol.%SiC Ipo-eutectic Composites,” Inter. J. Appl. Ceram. Technol., 15, 619-24 (2018).


98. L. T. Tang, D. G. Zhu, Z. Sun, X. S. Jiang, T. F. Song, and C. F. Hu, “Microstructure and Mechanical Properties of Al-Ti-Zr Intermetallic Compounds Prepared by Vacuum Hot Pressing,” Vacuum, 150, 166-72 (2018).


99. L. D. Xu, D. G. Zhu, Y. L. Liu, T. S. Suzuki, B. N. Kim, Y. Sakka, S. Grasso, and C. F. Hu*, “Effect of Texture on Oxidation Resistance of Ti3AlC2,” J. Eur. Ceram. Soc., 38, 3417-23 (2018).


100. H. Qian, D. G. Zhu, C. F. Hu, and X. S. Jiang, “Effects of Zr Additive on Microstructure, Mechanical Properties, and Fractography of Al-Si Alloy,” Metals, 8, 124 (2018).
101. L. D. Xu, O. L. Shi, C. Y. Liu, D. G. Zhu, S. Grasso, and C. F. Hu*, “Synthesis, Microstructure and Properties of MoAlB Ceramics,” Ceram. Inter., 44, 13396-401 (2018).
102. H. W. Zhang, D. G. Zhu, S. Grasso, and C. F. Hu*, “Tunable Morphology of Aluminum Oxide Whiskers Grown by Hydrothermal Method,” Ceram. Inter., 44, 14967-73 (2018).
103. Y. L. Liu, D. G. Zhu, S. Grasso, and C. F. Hu*, “Microstructure and Mechanical Properties of Gel Casted Ti3AlC2,” Ceram. Inter., 44,
23254-8 (2018).
104. J. J. Niu, H. B. Zhang, Y. Wu, C. F. Hu, and X. Wu, “Pressure-induced Reversible Phase Transition on Mo2Ga2C and Its Transformation Mechanism,” J. Appl. Phys., 124, 085903 (2018).


105. O. L. Shi, L. D. Xu, A. N. Jiang, Q. Xu, Y. T. Xiao, D. G. Zhu, S. Grasso, and C. F. Hu*, “Synthesis and Oxidation Resistance of MoAlB Single Crystals,” Ceram. Inter., 45, 2446-50 (2019).
106. M. Biesuz, J. Dong, S. Fu, Y. L. Liu, H. W. Zhang, D. G. Zhu, C. F. Hu*, and S. Grasso, “Thermally-insulated Flash Sintering,” Scripta Mater., 162, 99-102 (2019).
107. Z. Sun, W. Li, Y. L. Liu, H. W. Zhang, D. G. Zhu, H. L. Sun, C. F. Hu, and S. Chen, “Design and Preparation of A Novel Degradable Low-temperature Co-fired Ceramic (LTCC) Composites,” Ceram. Inter., 45, 7001-10 (2019).


108. M. Biesuz, R. Sedlák, T. Saunders, A. Koval?íková, J. Dusza, M. Reece, D. G. Zhu, C. F. Hu*, and S. Grasso, “Flash Spark Plasma Sintering of 3YSZ,” J. Eur. Ceram. Soc., 39, 1932-7 (2019).


109. Z. Zhang, S. Fu, F. Aversano, H. W. Zhang, C. F. Hu*, and S. Grasso, “Arc Melting: A Novel Method to Prepare Homogeneous Solid Solutions of Transition Metal Carbides (Zr, Ta, Hf),” Ceram. Inter., 45, 9316-9 (2019).


110. H. W. Zhang, D. D. Jayaseelan, I. Bogomol, M. J. Reece, C. F. Hu*, S. Grasso, and W. E. Lee, “A Novel Microstructural Design to Improve the Oxidation Resistance of ZrB2-SiC Ultra-high Temperature Ceramics (UHTCs),” J. Alloys Compd., 785, 958-64 (2019).


111. A. N. Jiang, L. D. Xu, D. Y. Ke, Q. Xu, J. Li, J. B. Wei, C. F. Hu*, and S. Grasso, “Cold Hydrostatic Sintering: From Shaping to 3D Printing,” J. Materio., /doi.org/10.1016/j.jmat.2019.02.009.


112. M. Biesuz, S. Fu, J. Dong, A. N. Jiang, D. Y. Ke, Q. Xu, D. G. Zhu, M. Bortolotti, M. Reece, C. F. Hu*, and S. Grasso, “High Entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x Perovskite by Reactive Spark Plasma Sintering,” J. Asian Ceram. Soc., 7, 127-32 (2019).





Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










科研项目 当前位置: 中文主页 >> 科学研究 >> 科研项目

1. 主持,国家自然科学基金联合基金 (U**), 强磁场织构化高强韧、抗辐照纳米层状类贝壳仿生结构陶瓷,60万,2013.01-2015.12。 (结题)
2. 主持,宁波自然科学基金(2013A610128),强磁场织构化纳米层状类贝壳仿生结构Ti3SiC2/Al2O3陶瓷复合材料的研究,4万,2013.01-2015.03。
(结题)
3. 主持,国家自然科学基金主任基金(**),新型双Ga/Sn/In层三元层状陶瓷的发现及构性关系研究,15万,2018.01-2018.12。 (结题)
4. 主持,四川省****基金(2019JDJQ0009),新型纳米层状陶瓷合成、结构设计及氦离子辐照损伤研究,40万,2019.1-2021.12。(在
研)





Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










研究领域 当前位置: 中文主页 >> 科学研究 >> 研究领域




Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










专利 当前位置: 中文主页 >> 科学研究 >> 专利


共0条0/0



Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










著作成果 当前位置: 中文主页 >> 科学研究 >> 著作成果


共0条0/0



Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次



个人信息MORE +
胡春峰Chunfeng Hu 教授
教师英文名称: Chunfeng Hu
所在单位: 材料科学与工程学院
学历: 博士研究生毕业
办公地点: 西南交通大学九里校区电气馆3204室
联系方式: 通信地址:成都市二环路北一段111号电子邮箱:chfhu@live.cn办公电话:**
学位: 工学博士学位
职称: 教授
电子邮箱: chfhu@live.cn
主要任职: 博士生导师
毕业院校: 中科院金属研究所
博士生导师
硕士生导师










教学工作 当前位置: 中文主页 >> 教学工作

教学资源
暂无内容

授课信息
暂无内容

教学成果
暂无内容



Copyright ? 2019 西南交通大学. All Rights Reserved.蜀ICP备**号
地址:中国四川省成都市高新区西部园区西南交通大学
川公网安备061号
技术支持:信息化与网络管理处
访问量:次
相关话题/材料科学与工程学院 西南交通大学