删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

成都理工大学计算机与网络安全学院导师教师师资介绍简介-马超

本站小编 Free考研考试/2021-09-15












姓名:马超
职称:教授,博士生导师
电子邮箱:machao@cdut.edu.cn
个人主页:https://sites.google.com/view/chaoma
Researchgate: https://www.researchgate.net/profile/chao_ma19


研究领域:1.旋回地层学/定量地层学;2.地质统计;3.地质大数据;4.知识图谱。


招生(硕士、博士、博士后):
欢迎具有以下一项或多项扎实基础的学生报考:地质学;数学;计算机;数据科学;统计学。


最新职位博士后
可以通过以下两种方式招博士后合作者,能力强者可以兼任两个。

成都理工大学
地质大数据或智能岩相古地理,或相关方向
要求:有大数据经验的博士。其他要求和待遇见学校公告(如打开报错请刷新打开的网页),具体待遇面议。欢迎有意者发邮件咨询。
DDE研究中心(苏州)
地质大数据或相关方向
要求:见DDE网站,工资:$53000。欢迎有意者发邮件咨询。


个人简介
马超,2004年进入中国地质大学地质学基地班学习,2008年获得地质学学士学位;2016年获美国威斯康辛大学麦迪逊分校(University of Wisconsin-Madison)地质学博士学位;2017-2020年先后在美国犹他大学地质系和爱达荷大学计算机系从事博士后研究。2021年2月获批国家高层次海外人才引进入职成都理工大学沉积地质研究院。在Nature、EPSL、GSAB、MEE、Geoscientific Model Development、Computers & Geosciences等国际一流期刊共发表英文SCI论文22篇。


发表论文(Google Scholar:https://goo.gl/WxzEsD):
[26] Huang, H., Gao, Y., Ma, C., Jones, M. M., Zeeden, C., Ibarra, D. E., ... & Wang, C., 2021. Organic carbon burial is paced by a~ 173-ka obliquity cycle in the middle to high latitudes. Science Advances, 7(28), eabf9489.
[25] Que, X.,Ma, C.*, Ma, X. and Chen, Q.,2021. Parallel computing for Fast Spatiotemporal Weighted Regression.Computers & Geosciences, p.104723.
[24] Wang, C., Hazen, R.M., Cheng, Q., Stephenson, M.H., Zhou, C., Fox, P., Shen, S.Z., Oberh?nsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J.,Ma, C., H, X., Luo, B., Wang, J.,2021. The Deep-time Digital Earth program: data-driven discovery in geosciences.National Science Review.
[23] Que, X., Ma, X.,Ma, C.*and Chen, Q.,2020. A spatiotemporal weighted regression model (STWR v1. 0) for analyzing local nonstationarity in space and time.Geoscientific Model Development, 13(12), pp.6149-6164.
[22] Ma, C., Vander Zanden, H.B., Wunder, M.B. and Bowen, G.J.,2020. assignR: An R package for isotope‐based geographic assignment.Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13426
[21] Ma, C., Meyers, S.R., Hinnov, L.A., Eldrett, J.S., Bergman, S.C. and Minisini, D.,2020. A method to decipher the time distribution in astronomically forced sedimentary couplets.Marine and Petroleum Geology, p.104399.
[20] Ma, C., Li, M.,2020. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies,Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2020.01.013
[19] Ma, X.,Ma, C.and Wang, C.,2020. A new structure for representing and tracking version information in a deep time knowledge graph.Computers & Geosciences, p.104620. https://doi.org/10.1016/j.cageo.2020.104620
[18] Yang, H., Huang, Y., Ma, C.*, Zhang, Z. and Wang, C., 2020. Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications. Journal of Asian Earth Sciences, 194, p.104183.
[17] Ma, C,Meyers R.S., Sageman B.B.,2019, Testing Late Cretaceous astronomical solutions in a 15 million year astrochronologic record from North America.Earth Planet. Sci. Lett. 513, 1–11.
[16] Ma, C,Meyers R.S., Sageman B.B.,2017, Late Cretaceous Secular Resonances and Confirmation of the Chaotic Behavior of the Solar System,Nature.DOI: 10.1038/nature21402
[15] Matthias Sinnesael, David De Vleeschouwer, Christian Zeeden, Sietske J. Batenburg, Da Silva Anne-Christine, Niels J. de Winter, Jaume Dinarès-Turell, Anna Joy Drury, Gabriele Gambacorta, Frits Hilgen, Linda Hinnov, Alexander J.L. Hudson, David B. Kemp, Margriet Lantink, Jiri Laurin, Mingsong Li, Diederik Liebrand,Chao Ma, Stephen Meyers, Johannes Monkenbusch, Sandro Montanari, Theresa Nohl, Heiko P?like, Damien Pas, Micha Ruhl, Nicolas Thibault, Maximilian Vahlenkamp, Luis Valero, Sébastien Wouters, Huaichun Wu, Philippe Claeys. 2019. The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls.Earth-Science Reviews, p.102965.
[14] Zhang, C., Jiang, S., Liu, D.D., Chakrabarti, R., Zeng, J.H., Santosh, M., Luo, Q., Spencer, C.J.,Ma, C., Liu, L.F. and Kong, X.Y.,2019. A novel model for silicon recycling in the lithosphere: Evidence from the Central Asian Orogenic Belt.Gondwana Research,76, pp.115-122.
[13] Ma, C, Meyers, R.S., Sageman, B.B., Jicha B., Singer, B.,2014, Testing the Astronomical Time Scale for Oceanic Anoxic Event 2, and its Extension into Cenomanian Strata of the Western Interior Basin.GSA Bulletin. doi:10.1130/B30922.1
[12] Carvajal, C.P., Soreghan, G.S., Isaacson, P.E.,Ma, C., Hamilton, M.A., Hinnov, L.A. and Dulin, S.A., 2018. Atmospheric dust from the Pennsylvanian Copacabana Formation (Bolivia): A high-resolution record of paleoclimate and volcanism from northwestern Gondwana.Gondwana Research. 58, 105-121.
[11] Ma, P., Wang, C., Meng, J.,Ma, C., Zhao, X., Li, Y. and Wang, M.,2017. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records.Gondwana Research, 48, pp.224-236.
[10] Eldrett, J.S.,Ma, C., Bergman, S.C., Ozkan, A., Minisini, D., Lutz, B., Jackett, S.J., Macaulay, C., Kelly, A.E.,2015. Origin of limestone–marlstone cycles: astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA.Earth Planet. Sci. Lett.423, 98–113.
[9] Eldrett, J.S.,Ma, C., Bergman, S.C., Lutz B., Gregory, J., Dodsworth, P., Phipps M., Hardas P., Minisini, D., Ozkan, A., Ramezani, J., Bowring, S.A., Kamo, S.L., Ferguson, K., Macaulay, C., Kelly, A.E.,2015, An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: Implications for global chronostratigraphy. Cretaceous Research, v. 56, p.316-344.
[8] Chen, X., Wang, C., Wu, H., Kuhnt, W., Jia, J., Holbourn, A., Zhang, L. and Ma, C.,2015. Orbitally forced sea-level changes in the upper Turonian–lower Coniacian of the Tethyan Himalaya, southern Tibet.Cretaceous Research, 56, pp.691-701.
[7] Chen X., Wang C., Kuhnt W., Holbourn A., Huang Y.,Ma,C.,2011,Lithofacies, microfacies and depositional environments of Upper Cretaceous Oceanic Red Beds (Chuangde Formation) in southern Tibet.Sedimentary Geology, 235(2011) 100-110.
[6] Li, Y., Wang, C., Zhao, X., Yin, A., and Ma, C.,2012. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet.Gondwana Research, 22, pp.482-492.
[5] Li, Y., Wang, C.,Ma, C., Xu, G. and Zhao, X.,2011, Balanced cross-section and crustal shortening analysis in the Tanggula-Tuotuohe Area, Northern Tibet.Journal of Earth Science, 22(1).
[4] Li, Y., Wang, C., Xu, G., Zhao, X.,Ma, C.,2010, Crustal Shortening in the Tanggula-Tuotuohe Area, Northern Tibet, in Leech, M.L., and others, eds., Proceedings for the 25th Himalaya-Karakoram-Tibet Workshop: U.S. Geological Survey, OpenFile Report 2010-1099, 2 p.
[3] Li Y., Wang C., Li Y.,Ma, C., Wang L., Peng S., 2010, The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation.Petroleum Science, 7: 466-471.
[2] 李林, 周锡强, 黄永建, 马超, 2009. 色度学方法的深时研究: 以藏南贡扎剖面白垩系赛诺曼/土仑阶为例. 地学前缘, 16(5), 153.
[1] 马超, 王成善, 陈曦, 黄永健, 2009. 藏南晚白垩世旋回地层学研究: 以定日贡扎剖面为例. 地学前缘, 16(5), 134.


开发软件:
1.空间同位素统计分析软件包:assignR (https://CRAN.R-project.org/package=assignR,截止2021年2月累计下载~9000次)
2.时空分析软件STWR (https://github.com/quexiang/STWR)
3.深时知识图谱工具DeepTimeKB (https://github.com/xgmachina/DeepTimeKB)


邀请报告:
·第一届地球能源与大数据学术研讨会(2021)
·地学大数据及地学空间建模(2021)
·GIS Day at University of Idaho (2020)
·Goldschmidt Geochemistry Conference (2020)
·Arizona State University, School of Geographical Sciences and Urban Planning (2019)
·GIS Day at University of Idaho (2019)
·天津大学,表层地球系统科学研究院(2018)
·中国地质大学(武汉),地球科学学院(2018)
·Goldschmidt Geochemistry Conference (2018)
·中国科技大学,地球和空间科学学院(2018)
·南京大学,地球科学与工程学院(2018)
·西北大学,地质系(2018)
·GSA Annual Meeting (2017)
·中山大学,地球科学与工程学院(2017)
·中国地质大学(武汉),地球科学学院(2017)
·George Mason University,大气海洋和地球科学系(2016)


项目:
1. 海外高层次人才引进,2021年-至今,在研,主持
2. 中国国家自然基金,面上项目,2022-2025,60万,在研,主持
3. 中国国家自然基金地球科学部原创探索计划项目两项:
沉积物知识图谱及其知识演化研究,2020年-至今,496万,在研,参与
含油气盆地岩相古地理解析与智能编图,2020年-至今,496万,在研,参与
4. 美国国家自然基金,面上项目,OAC**,Elements: Software: HDR: A knowledge base of deep time to facilitate automated workflows in studying the co-evolution of the geosphere and biosphere,2019-02至现在, 59.7万美元,在研,参与。
5. 地球科学信息联盟基金,FUNding Friday Projects,Deep Time Climate Data,2019-07至2019-12,5000美元,完成,主持。
6. 美国国家自然基金,重点项目,EF-**,Inter-University Training for Continental-Scale Ecology: Bridging Scales and Systems with Isotopes,2017-02至2019-01,434万美元,完成,参与。
7. 美国国家自然基金,重点项目,DBI-**,Origin Inference from Geospatial Isotope Networks,2017-02至2019-01,150万美元,完成,参与。
8. 中国科学院前沿科学重点研究项目,新近纪东亚季风的轨道周期变化及其全球意义,2016-08至现在,250万,在研,参与。
9. 美国国家自然基金,面上项目,EAR**,Collaborative Research: Investigating the biotic and paleoclimatic consequences of dust in the Late Paleozoic,2016-08至2017-01,6.7万美元,完成,参与。
10. 美国国家自然基金,面上项目,EAR**,Deciphering the Beat of a Timeless Rhythm - The Future of Astrochronology,2012.09-2016.06,57.6万美元,结题,参与。
11. 美国国家自然基金,面上项目,EAR**,Collaborative Research: Integrating Radioisotopic and Astronomical Time Scales for the Cretaceous,2010-09至2012-08,42万美元,结题,参与。
12. 中国国家科技部,973计划课题,2006CB701406,白垩纪重大地质事件与温室气候变化综合研究,2008-08至2010-08,1100万元,结题,参与。


学术兼职:
1.编委:Palaeogeography Palaeoclimatology Palaeoecology

2.审稿人:
Science Advances,
Geology,
Earth and Planetary Science Letters,
Precambrian Research,
Palaeogeography Palaeoclimatology Palaeoecology,
Climate of Past,
Paleoceanography and Paleoclimatology,
Palaeogeography Palaeoclimatology Palaeoecology,
Geoscience Frontiers,
Cretaceous Research,
Computers and Geosciences,
Advances in Space Research,
Applied Computing & Geosciences.


3.会议召集人:
- IN013 - Big Data and Data Mining in Deep Time, AGU 2019, San Francisco, CA, USA.
- PP009 - Cyclostratigraphy and Astronomical Forcing of Past Climates, AGU 2019, San Francisco, CA, USA.
- Oral and poster sessions for T47. Recent Developments in Cyclostratigraphy, GSA 2017, Seattle, USA.
- Oral and poster sessions for PP42B: Cyclostratigraphy and Astronomical Forcing of Past Climates I, II, AGU 2017, New Orleans, USA.
- 2019 First Deep Time Data Science Mini-Workshop, Moscow, ID, USA.
(来源:沉积院网站)




相关话题/网络安全 大学计算机