北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124
收稿日期:2020-01-14
基金项目:北京市自然科学基金重点资助项目(8171001)。
作者简介:张志红(1976-),女,河北深州人,北京工业大学教授;
张钦喜(1964-),男,山东肥城人,北京工业大学教授。
摘要:悬挂式止水帷幕的挡水效应能够减轻基坑降水对周边环境的影响, 但帷幕插入深度与坑外地面沉降之间的定量关系尚不明确.本文基于有效应力原理, 并根据渗流场和应力场的部分耦合关系, 考虑地下水位下降引起的土体孔隙比和压缩指数变化, 通过止水帷幕插入深度与水位降深的关系提出了不同止水帷幕插入深度下潜水含水层中基坑降水引起坑外地面沉降的计算方法.结合室内渗流模型箱试验对所提方法进行验证, 结果表明地面沉降的试验监测结果与计算结果基本一致, 从而为准确预测地面沉降和设计合理的止水帷幕插入深度提供了重要参考.
关键词:悬挂式止水帷幕基坑降水地面沉降渗流流固耦合
Calculation Method for Land Subsidence Induced by Dewatering of Foundation Pit with Suspended Waterproof Curtains
ZHANG Zhi-hong, GUO Yan-chen, FAN Qi-hui, ZHANG Qin-xi
The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Corresponding author: GUO Yan-chen, E-mail: 18310351686@163.com.
Abstract: The blocking effect of the suspended waterproof curtain can reduce the impact of foundation pit dewatering on the surrounding environment. However, the quantitative relationship between the insertion depth of the curtain and the land subsidence outside the pit is still unclear. Based on the principle of effective stress, and the partial coupling effect of the seepage field and the stress field where changes in soil void ratio and compression index caused by the drop of groundwater level was considered, a calculation method for land subsidence outside the pit caused by the dewatering of the foundation pit with suspended waterproof curtain in unconfined aquifers considering the relationship between the insertion depth of the waterproof curtain and the drop of groundwater level was proposed. A seepage experiment using a self-designed test model box was adopted to verify and analyze the proposed method. The results show that the calculated values are nearly close to the experimental values. The calculation method provides a significant reference for land subsidence prediction and the design of the insertion depth of rational waterproof curtain.
Key words: suspended waterproof curtainfoundation pit dewateringland subsidenceseepageliquid-solid coupling
随着我国经济实力和综合国力的不断增强, 基础设施建设中深基坑开挖大量抽排地下水引起的周边地面沉降已成为不可忽视的环境问题[1-3], 因此需要确定合理的降水方案来减轻对周边环境的影响.对于赋存深厚含水层的基坑降水工程, 一般采用悬挂式止水帷幕进行降水处理.止水帷幕的挡水作用体现在三个方面: 延长地下水的渗流路径, 改变渗流方向和减小渗流区域[4-6].目前设计悬挂式止水帷幕插入深度并没有统一的标准, 而仅依据经验而定.当止水帷幕插入含水层过浅时, 其挡水作用将不能体现, 周边仍会产生明显的地面沉降;当止水帷幕插入含水层太深时, 施工的难度和费用将会增加.许多研究者通过室内试验、数值模拟和理论计算对悬挂式止水帷幕基坑降水引起的地面沉降开展了一系列研究.文献[7-10]通过数值模拟和室内试验研究了止水帷幕插入深度不同时地面沉降变化, 分析得出在承压含水层中进行基坑降水时, 坑外地面沉降随止水帷幕插入深度的增加而减小, 并且变化过程分为三个阶段, 即初始缓慢下降阶段、剧烈下降阶段和最终平缓阶段.然而数值模拟和室内试验仅能反映止水帷幕插入深度与地面沉降的定性关系, 无法对基坑降水引起的地面沉降作出定量预测.而目前基坑降水引起坑外沉降的理论计算大多未考虑止水帷幕插入深度的影响, 仅根据渗流场和应力场的耦合关系来进行分层总和计算[11-12]、部分耦合计算[13]和完全耦合计算[14-15].因此在倡导非降水施工的政策导向和工程安全需求的背景下, 亟需研究悬挂式止水帷幕基坑降水引起的环境效应.
本文通过止水帷幕设置深度与水位降深的关系, 同时考虑降水过程中土体孔隙比和压缩指数的变化, 基于有效应力原理提出了考虑止水帷幕设置深度的潜水含水层基坑降水引起的坑外地面沉降计算方法, 从而能够准确确定设置止水帷幕条件下的基坑降水环境效应.
1 悬挂式止水帷幕基坑降水坑外地面沉降计算方法1.1 基本假设1) 含水层均质, 产状水平、厚度不变;
2) 地下水渗流服从达西定律;
3) 忽略帷幕厚度的影响;
4) 忽略施工过程中造成的止水帷幕的移动和变形, 认为基坑降水过程中帷幕固定不动;
5) 隔水层和止水帷幕均为完全不透水介质.
1.2 降水前土体初始应力本文研究潜水含水层中的悬挂式止水帷幕基坑降水, 基坑半径为rw, 其降水示意图如图 1所示.为保证施工安全, 降水后基坑内的水位即基坑设计水位hd应低于坑底0.5 m[16].
图 1(Fig. 1)
图 1 悬挂式止水帷幕基坑降水示意图Fig.1 Schematic diagram of foundation pit dewatering with suspended waterproof curtain |
当土层的厚度为H0时, 初始地下水位H以下任一点的初始应力为
(1) |
1.3 基坑降水引起的水位降深将基坑中轴线和隔水层顶板交线上的一点设为坐标原点, 并分别将平行和垂直于隔水顶板的方向定义为x轴方向和y轴方向, 建立坐标系, 如图 2所示.
图 2(Fig. 2)
图 2 降水后基坑水位分布Fig.2 Distribution of water level after the foundation pit dewatering |
当进行降水施工时, 因悬挂式止水帷幕未完全切断基坑内外的水力联系, 基坑降水导致坑外水位在基坑周围形成降落漏斗曲线f(y), 如图 2所示.此时, 基坑外任一点处的水位h[17]可由式(2)确定:
(2) |
当地下水位位于帷幕底部以上时, 坑外任一点处的水位降深随着离基坑距离的不断增大而减小, 最大水位降深出现在止水帷幕附近[17], 且最大水位降深处的水位hw[18]可由式(3)确定:
(3) |
当地下水位位于帷幕底部以下时, 地下水渗流并未受到止水帷幕挡水效应的影响, 因此在过水断面处地下水位为定值h0, 且表示为[19]
(4) |
故基坑外任一点处的水位降深sw为
(5) |
(6) |
(7) |
由于抽水井半径与降水影响半径R相比特别小, 因此忽略抽水井半径的大小.将式(6)代入式(7), 则基坑外任意深度y处由于降水导致的有效应力增量Δσy为
(8) |
(9) |
压缩系数a, 压缩模量Es和压缩指数Cc三者均是在侧限条件下土体的压缩指标.因此根据3个指标的物理含义及相互关系, 土体压缩指数Cc可表示为
(10) |
(11) |
(12) |
(13) |
(14) |
2 室内模型试验验证2.1 室内渗流试验为了对地面沉降计算式(14)进行验证, 采用了尺寸(长×宽×高)为3 m×0.7 m×1.5 m的室内渗流模型箱进行试验, 其示意图如图 3所示[19].试验研究了止水帷幕插入深度hc分别为70, 80, 90, 100,110 cm时, 基坑降水后的潜水含水层水位和坑外地表沉降变化规律.
图 3(Fig. 3)
图 3 渗流模型箱示意图(单位:mm)Fig.3 Schematic diagram of the seepage model box (a)—渗流模型箱装置示意图; (b)—渗流模型箱简化图. |
2.2 计算结果与试验结果对比分析试验采用水洗砂作为试验材料, 基本参数见表 1.设止水帷幕所在位置与所测沉降点的水平距离为x.根据室内试验设定的参数, 选取x=0.7, 0.9, 1.1, 1.3, 1.4 m处不同止水帷幕插入深度时的沉降监测值与其相应的计算值进行对比分析.由图 4和表 2可知, 当止水帷幕与所测沉降点的水平距离不同时, 沉降监测值与其对应的计算值基本接近, 验证了该方法的合理性.但是试验值与计算值存在一定的误差.一方面, 由于止水帷幕的挡水效应, 地下水在过水断面处存在紊流, 与模型假设的达西渗流存在差异.另一方面, 由于试验模型箱的尺寸效应, 降水影响半径的试验值与实际影响半径存在偏差, 不能完全还原地下水渗流过程, 可能会造成试验值存在误差.
表 1(Table 1)
表 1 试验水洗砂基本参数Table 1 Parameters of the sand in the laboratory experiment
| 表 1 试验水洗砂基本参数 Table 1 Parameters of the sand in the laboratory experiment |
图 4(Fig. 4)
图 4 止水帷幕插入深度不同时坑外沉降计算值与试验值对比Fig.4 Comparison on calculated values and experimental values of settlement under the different insertion depth of waterproof curtain (a)—x=0.7 m; (b)—x=0.9 m; (c)—x=1.1 m; (d)—x=1.3 m; (e)—x=1.4 m. |
表 2(Table 2)
表 2 止水帷幕插入深度不同时坑外沉降计算值与试验值对比Table 2 Comparison between calculated values and experimental values of settlement at the different insertion depth of rational waterproof curtain
| 表 2 止水帷幕插入深度不同时坑外沉降计算值与试验值对比 Table 2 Comparison between calculated values and experimental values of settlement at the different insertion depth of rational waterproof curtain |
如图 4a~4e所示, 由计算结果可知, 随着止水帷幕插入深度的增加, 坑外地面沉降的减小过程可分为三个阶段: ①初始缓慢下降阶段; ②剧烈下降阶段; ③最终平缓阶段.
当插入深度在70 ~80 cm时, 由于止水帷幕插入深度太浅, 挡水效果不明显, 坑外地面沉降的变化较为缓慢; 当插入深度在80 ~100 cm时, 止水帷幕的挡水效果增强, 坑外地面沉降的变化显著; 当插入深度在100 ~110 cm时, 止水帷幕的插入深度的进一步增加会减少基坑内外的水力联系, 从而导致地面沉降的变化减缓.
3 结论1) 基坑降水过程中地下水位下降引起的土体孔隙比和压缩指数的变化可反映渗流场对应力场的影响.
2) 室内试验地面沉降监测值与计算值基本接近, 表明所提出的计算方法可为实际施工过程中预测周边地面沉降和设计合理的止水帷幕插入深度提供重要参考.
3) 潜水含水层中基坑降水引起的坑外地面沉降随止水帷幕插入深度增加而减小, 变化过程主要划分为初始缓慢下降、剧烈下降和最终平缓三个阶段. 参考文献:
参考文献
[1] | Shen S L, Xu Y S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai[J]. Canadian Geotechnical Journal, 2011, 48(9): 1378-1392. DOI:10.1139/t11-049 |
[2] | Wang X W, Yang T L, Xu Y S, et al. Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering[J]. Journal of Hydrology, 2019, 577: 1-11. |
[3] | 汪洋. 深基坑降水对周边环境的影响[J]. 工程技术研究, 2020(11): 48-49. (Wang Yang. Impact of deep foundation pit dewatering on the surrounding environment[J]. Engineering and Technological Research, 2020(11): 48-49. DOI:10.3969/j.issn.1671-3818.2020.11.022) |
[4] | Shen S L, Wu Y X, Misra A. Calculation of head difference at two sides of a cutoff barrier during excavation dewatering[J]. Computers and Geotechnics, 2017, 91: 192-202. DOI:10.1016/j.compgeo.2017.07.014 |
[5] | Pujades E, López A, Carrera J, et al. Barrier effect of underground structures on aquifers[J]. Engineering Geology, 2012, 145/146(7): 41-49. |
[6] | Wu Y X, Shen S L, Yuan D J. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer[J]. Journal of Hydrology, 2016, 539: 554-566. DOI:10.1016/j.jhydrol.2016.05.065 |
[7] | 李伟, 童立元, 王占生, 等. 不同地连墙插入深度下降水对周边环境影响分析[J]. 地下空间与工程学报, 2015(sup1): 278-283. (Li Wei, Tong Li-yuan, Wang Zhan-sheng, et al. Analysis of impact of dewatering on the environment under different inserted depth of ground wall[J]. Chinese Journal of Underground Space and Engineering, 2015(sup1): 278-283.) |
[8] | Xu Y S, Shen S L, Ma L, et al. Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths[J]. Engineering Geology, 2014, 183(9): 254-264. |
[9] | Xu Y S, Yan X X, Shen S L, et al. Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation[J]. Hydrogeology Journal, 2019, 27(7): 2659-2672. DOI:10.1007/s10040-019-01992-3 |
[10] | 赵宇豪, 童立元, 朱文骏, 等. 不同止水帷幕插入深度下基坑降水对周边环境的影响预测分析[J]. 水利水电技术, 2020, 51(5): 126-131. (Zhao Yu-hao, Tong Li-yuan, Zhu Wen-jun, et al. Prediction and analysis of the influence of foundation pit dewatering on the surrounding environment under different water stop curtain insertion depth[J]. Water Resources and Hydropower Engineering, 2020, 51(5): 126-131.) |
[11] | 江杰, 魏丽, 胡盛斌, 等. 富水深基坑降水引起的地表沉降预测[J]. 科学技术与工程, 2020, 20(20): 8356-8361. (Jiang Jie, Wei Li, Hu Sheng-bin, et al. Prediction of surface subsidence induced by deep foundation pit dewatering[J]. Science Technology and Engineering, 2020, 20(20): 8356-8361.) |
[12] | 李琳, 张建根, 杨敏. 疏干降水引起坑后地面沉降的一种简化计算方法[J]. 岩土工程学报, 2008, 30(sup1): 306-309. (Li Lin, Zhang Jian-gen, Yang Min. Simplified analysis of settlement due to dewatering of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(sup1): 306-309.) |
[13] | Niu W J, Wang Z Y, Feng C, et al. Settlement analysis of a confined sand aquifer overlain by a clay layer due to single well pumping[J]. Mathematical Problems in Engineering, 2013, 2013: 388-400. |
[14] | 李筱艳, 王传鹏, 柳毅. 渗流场与应力场的完全耦合模型及其在深基坑工程中的应用[J]. 水文地质工程地质, 2004, 31(6): 86-89. (Li Xiao-yan, Wang Chuan-peng, Liu Yi. Fully coupling model of seepage and stress and its application in deep foundation[J]. Hydrogeology & Engineering Geology, 2004, 31(6): 86-89. DOI:10.3969/j.issn.1000-3665.2004.06.019) |
[15] | Selvadurai A P S, Kim J. Ground subsidence due to uniform fluid extraction over a circular region within an aquifer[J]. Advances in Water Resources, 2015, 78: 50-59. DOI:10.1016/j.advwatres.2015.01.015 |
[16] | 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012. (Ministry of Housing and Urban-Rural Development of People′s Republic of China. Technical specification for retaining protection of building foundation excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. ) |
[17] | 张邦芾. 基坑工程地下水渗流场特性研究[D]. 北京: 中国建筑科学研究院, 2014. (Zhang Bang-fei. Study on the characteristics of groundwater seepage field in foundation pit engineering [D]. Beijing: China Academy of Building Research, 2014. ) |
[18] | 秦文龙. 富水地层基坑悬挂式止水帷幕控水方法及优化研究[D]. 北京: 北京工业大学, 2019. (Qin Wen-long. Study on water control method and optimization of suspended water stop curtain for foundation pit in water-rich stratum[D]. Beijing: Beijing University of Technology, 2019. ) |
[19] | 张钦喜, 闫金波, 王成名, 等. 悬挂式止水帷幕室内模型试验研究[J]. 东北大学学报(自然科学版), 2020, 41(11): 1640-1645. (Zhang Qin-xi, Yan Jin-bo, Wang Cheng-ming, et al. Study on indoor model test of suspended water curtain[J]. Journal of Northeastern University(Natural Science), 2020, 41(11): 1640-1645. DOI:10.12068/j.issn.1005-3026.2020.11.019) |