周立明
, 孟广伟
, 李锋
, 郭桂凯
吉林大学 机械科学与工程学院,吉林 长春 130025
收稿日期: 2015-03-09
基金项目: 国家重大科学仪器设备开发专项(2012YQ030075);国家自然科学基金资助项目(51305157);吉林省科技厅基金资助项目(20160520064JH).
作者简介: 周立明(1982-), 男, 吉林白山人,吉林大学副教授, 博士;
孟广伟(1959-), 男, 吉林长春人, 吉林大学教授, 博士生导师。
摘要: 为克服有限元法(FEM)某些固有的缺陷,提高计算精度,将Cell-Based光滑有限元法(CSFEM)与扩展有限元法(XFEM)相结合,提出光滑扩展有限元法(CS-XFEM).用该方法对含中心裂纹和斜裂纹的正交各向材料板进行模拟,并与FEM,XFEM和BXFEM (bimaterial extended finite element method)计算结果进行对比.数值算例结果表明,CS-XFEM兼具CSFEM和XFEM两者优点:单元网格与裂纹面相互独立,裂尖不必是单元节点,裂尖处网格也不需要加密,域内积分可转化为边界积分,形函数不需求导,对网格质量要求低;因此是分析断裂问题的简洁高效的数值计算方法.
关键词:光滑扩展有限元法正交各向异性扩展有限元法应力强度因子
Cell-based Smoothed Extended Finite Element Method for Composite Materials with Cracks
ZHOU Li-ming
, MENG Guang-wei
, LI Feng
, GUO Gui-kai
School of Mechanical Science and Engineering, Jilin University, Changchun 130025, China
Abstract: To overcome some inherent flaws and improve accuracy of the finite element method (FEM), a novel numerical method called cell-based smoothed extended finite element method (CS-XFEM) was presented. It combined the cell-based smoothed finite element method (CSFEM) and the extended finite element method (XFEM). The CS-XFEM was used to simulate an orthotropic plate containing center crack or inclined crack, and then was compared with FEM, XFEM and bimaterial extended finite element method (BXFEM). The result shows that the CS-XFEM has the advantages of both the CSFEM and XFEM: the meshes are independent to the crack surface; the end of crack needn't to be a node and the meshes around the end needn't to be fined; the CS-XFEM can transform domain integration into boundary integration, therefore, the derivatives of the shape functions are not needed and the mesh size needn't to be regular. The CS-XFEM is a simple and efficient numerical method to analyze fracture problems.
Key Words: numerical calculationCS-XFEMorthotropicXFEMstress intensity factor
有限元是目前解决工程实际问题最有效的数值方法,但其存在某些固有的缺陷
[1-2]:①求解裂纹类强间断问题需细分网格;②模拟大变形问题时网格需不断地重构;③处理夹杂问题时需沿夹杂和基体的界面处划分网格;④刚度矩阵过刚,位移解偏小等.为克服前三点困难提出了扩展有限元,为改进解的精度提出了光滑有限元.
XFEM由Belytschko等
[3]提出,是目前求解含断裂问题最有效的数值方法.XFEM基于单位分解法,在位移场中引入扩展项,其计算网格独立于结构的任何内部细节点,具有计算精度高、网格划分简单等特点.Mo?s,Sukumar等
[4-5]将该方法推广到了三维,Asadpoure等
[6]利用该方法研究了正交材料中的静态裂纹问题.Esnaashari等
[7]提出了求解裂纹问题的BXFEM.Motamedi等
[8]在动态裂纹扩展方面进行了研究.方修君等
[9]将XFEM嵌套于ABAQUS软件中,对含裂纹混凝土结构进行了研究;余天堂
[10]将XFEM与线性互补法相结合,求解了裂纹面非线性接触问题.
SFEM(smoothed finite element method)是Liu等
[11]将光滑应变措施引入有限元法,改进有限元法刚度结构的一种方法,具有形函数简单、对网格要求低、计算效率高等优点,现已广泛应用于各个领域
[12-15].
本文基于CSFEM,结合XFEM,提出了CS-XFEM(cell-based smoothed element method),对含中心裂纹、斜裂纹的正交各向材料板进行了模拟,并与FEM,XFEM和BXFEM计算结果进行了对比.
1 复合材料断裂力学正交各向异性材料的正轴应变与应力关系为
| (1) |
式中:
和
分别为应力和应变列阵;
S为材料的柔度矩阵,二维空间中为
| (2) |
式中
E,
ν和
G分别为弹性模量、泊松比和剪切弹性模量.
图 1(Fig. 1)
如
图 1所示,考虑一个等厚度、均匀的正交各向异性体含一条穿透裂纹的情况,满足力边界
和位移边界
,(
x,
y)为全局坐标,(
x′,
y′)为局部坐标,(
r,
θ)为极坐标,假定弹性主方向与参考坐标轴一致时,平面应力状态下应力函数
F应满足的变形协调方程为
| (3) |
特征方程的根为
λ1,
1,
λ2,
2.
1,
2分别为
λ1和
λ2的共轭复数,则裂纹尖端应力场和位移场的渐近解
[6]如下:
I型:
| (4) |
| (5) |
| (6) |
| (7) |
| (8) |
II型:
| (9) |
| (10) |
| (11) |
| (12) |
| (13) |
式中:Re表示取实部;
KI和
KII分别为I型和II型裂纹的应力强度因子;
| (14) |
| (15) |
2 Cell-based光滑扩展有限元法Cell-based光滑扩展有限元法的位移模式与扩展有限元表达形式一致,即
| (16) |
式中:
I为节点(
图 2中‘?’),
J为被裂纹完全贯穿单元的节点(
图 2中‘□’),
K为裂尖单元的节点(
图 2中‘○’);
NIu(
x),
NJa(
x)和
NKb(
x)分别为相应节点的形函数,
uI,
aJ和
bK分别为相应节点的位移;
NCS-FEM,
NCS-c,
NCS-f分别为节点
I,
J,
K的集合.
H(
x)为Heaviside函数:
| (17) |
式中:
x*为裂纹面节点坐标;
n为外法向向量.
Fl(
x)为裂尖处扩展函数:
图 2(Fig. 2)
如
图 2所示,将求解域
Ω离散为
Ne个四边形单元,节点个数为
Nd,
Ω=∪
i=1NeΩie,
Ωie∩
Ωje=
,
i≠
j,
为空集,再将
Ωei划分为
nc个光滑区域,共
Ns个光滑子域.
应变满足:
| (19) |
式中
Iu(
xk),
Ja(
xk)和
Kb(
xk)分别为相应
I,
J,
K节点的光滑应变矩阵,可统一表示为
| (20) |
式中:
| (21) |
| (22) |
| (23) |
式中:
h=
x,
y;
l=1, 2, 3, 4;
Nseg为边界
Γsk的个数;
Ngau为每段边界高斯点的个数;
wm, n为高斯权函数;
nx和
ny为积分段外法向向量的分量;
xm, n为第
m段边界处的第
n个高斯点;
Ask为第
k光滑区域的面积:
| (24) |
离散方程为
| (25) |
式中:
| (26) |
| (27) |
| (28) |
| (29) |
| (30) |
| (31) |
| (32) |
| (33) |
| (34) |
式中:
| (35) |
式中:
C为弹性矩阵;
为体力;
为面力;
N为有限元形函数.
3 交互积分考虑两种独立的平衡状态:状态1(
σij(1),
εij(1),
ui(1))为真实物理场状态,状态2(
σij(2),
εij(2),
ui(2))为辅助物理场状态.叠加状态1和状态2可得到另一状态的
J积分
[16] | (36) |
式中:
δ1j为克罗内克函数;
A为求解域;
q为任一可微函数.
整理式(36),得
| (37) |
式中:
M(1+2)为交互积分,
| (38) |
| (39) |
式(38)可化为
| (40) |
式中:
KI(1)和
KII(1)为真实场下的I型和II型应力强度;
KI(2)和
KII(2)为辅助场下的I型和II型应力强度;
| (41) |
| (42) |
| (43) |
式中Im表示取虚部.
取
KI(2)=1,
KII(2)=0,式(38)为
| (44) |
取
KI(2)=0,
KII(2)=1,式(38)为
| (45) |
4 数值算例4.1 算例1含中心裂纹的正交各向异性材料板受均布载荷作用,裂纹长度为2
a,单位板厚、几何构型、加载方式,以及网格划分为4 900时的情况如
图 3所示.材料参数:
E11=114.8 GPa,
E22=11.7GPa,
G12=9.66 GPa,
ν12=0.21.
图 3(Fig. 3)
表 1给出了FEM,XFEM,CS-XFEM和BXFEM求解含中心裂纹复合材料板应力强度因子
KI的结果,其中
ncell为单元数.从表中可以看出CS-XFEM具有较高的计算精度,与BXFEM和XFEM所得结果十分接近,远高于FEM求解精度;也可看出,积分区域
c的选取对计算结果影响不大.CS-XFEM不仅具有XFEM的优点:单元与裂纹面相互独立, 裂尖不必为单元节点,裂尖处也不需要网格加密,还具有CSFEM形函数简单、对网格要求低的特点.
表 1(Table 1)
表 1 含中心裂纹的复合材料板的应力强度因子KITable 1 Stress intensity factor KI of a composite plate with central crack 方法 | ncell | c/a | KI/(MPa·cm1/2) | FEM | 5184 | — | 1.7580 | CS-XFEM | 400 | 0.8 | 1.7732 | 900 | 0.5 | 1.7666 | 900 | 0.8 | 1.7689 | 2116 | 0.8 | 1.7733 | 2704 | 0.6 | 1.7763 | 5184 | 0.4 | 1.7841 | 5184 | 0.8 | 1.7765 | XFEM[6] | 2025 | 0.5 | 1.807 | BXFEM[7] | 2025 | — | 1.777 |
| 表 1 含中心裂纹的复合材料板的应力强度因子KI Table 1 Stress intensity factor KI of a composite plate with central crack |
图 4给出了CS-XFEM得到的应力云图,很明显地表现出了应力场的不连续性和正交特性效应,从而也说明了CS-XFEM的正确性.
4.2 算例2含斜裂纹的正交各向异性材料板受均布载荷作用,裂纹长度为
a,
φ=45°,单位板厚、几何构型、加载方式和单元划分如
图 5所示.材料参数:
E11=0.81GPa,
E22=11.84GPa,
G12=0.63GPa,
ν12=0.38.
表 2给出了CS-XFEM和XFEM求解应力强度因子的结果,可见两者精度基本一致,证明了CS-XFEM的正确性与有效性.
图 6给出了
c/
a=0.3,0.4,0.5,0.6,0.7,0.8时,采用CS-XFEM计算所得的应力强度因子
KI和
KII,可见CS-XFEM对
c/
a不敏感,具有较高的求解精度.
图 4(Fig. 4)
图 5(Fig. 5)
表 2(Table 2)
表 2 CS-XFEM和XFEM结果比较Table 2 CS-XFEM and XFEM results compared 方法 | ncell | KI/(MPa·mm1/2) | KII/(MPa·mm1/2) | CS-XFEM | 900 | 0.7238 | 0.2240 | 2116 | 0.7252 | 0.2262 | 2704 | 0.7253 | 0.2263 | XFEM[6] | — | 0.7378 | 0.2303 |
| 表 2 CS-XFEM和XFEM结果比较 Table 2 CS-XFEM and XFEM results compared |
图 6(Fig. 6)
5 结论1) CS-XFEM的计算精度同XFEM和BXFEM精度基本相同,远高于FEM求解精度.
2) CS-XFEM兼具CSFEM和XFEM的优点.
3) CS-XFEM对
c/
a的取值不敏感.
参考文献 [1] | Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 46(1) : 131–150.DOI:10.1002/(ISSN)1097-0207(0) |
[2] | Liu G R, Nguyen T, Dai K, et al. Theoretical aspects of the smoothed finite element method (SFEM)[J].International Journal for Numerical Methods in Engineering, 2007, 71(8) : 902–930.DOI:10.1002/(ISSN)1097-0207(0) |
[3] | Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 45(5) : 601–620.DOI:10.1002/(ISSN)1097-0207(0) |
[4] | Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 46(1) : 131–150.DOI:10.1002/(ISSN)1097-0207(0) |
[5] | Sukumar N, Prévost J H. Modeling quasi-static crack growth with the extended finite element method[J].International Journal of Solids and Structures, 2003, 40(26) : 7513–7537.DOI:10.1016/j.ijsolstr.2003.08.002(0) |
[6] | Asadpoure A, Mohammadi S. Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[J].International Journal for Numerical Methods in Engineering, 2007, 69(10) : 2150–2172.DOI:10.1002/(ISSN)1097-0207(0) |
[7] | Esnaashari S, Mohammadi S. Delamination analysis of composites by new orthotropic bimaterial extended finite element method[J].International Journal for Numerical Methods in Engineering, 2011, 86(13) : 1507–1543.DOI:10.1002/nme.v86.13(0) |
[8] | Motamedi D, Mohammadi S. Dynamic analysis of fixed cracks in composites by the extended finite element method[J].Engineering Fracture Mechanics, 2010, 77(17) : 3373–3393.DOI:10.1016/j.engfracmech.2010.08.011(0) |
[9] | 方修君, 金峰. 基于ABAQUS平台的扩展有限元法[J].工程力学, 2007, 24(7) : 6–10. ( Fang Xiu-jun, Jin Feng. Extended finite element method based on ABAQUS[J].Engineering Mechanics, 2007, 24(7) : 6–10.)(0) |
[10] | 余天堂. 模拟三维裂纹问题的扩展有限元法[J].岩土力学, 2010, 31(10) : 3280–3285. ( Yu Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J].Rock and Soil Mechanics, 2010, 31(10) : 3280–3285.)(0) |
[11] | Liu G R, Dai K Y, Nguyen T T. A smoothed finite element method for mechanics problems[J].Computation Mechanics, 2007, 39(6) : 859–877.DOI:10.1007/s00466-006-0075-4(0) |
[12] | Chen J S, Wu C T, Yoon S. A stabilized conforming nodal integration for Galerkin mesh-free method[J].International Journal for Numerical Methods in Engineering, 2001, 50(2) : 435–466.DOI:10.1002/(ISSN)1097-0207(0) |
[13] | Zhou L M, Meng G W, Feng L, et al.A cell-based smoothed XFEM for fracture in piezoelectric materials[J/OL].[2015-01-23].http://dx.doi.org/10.1155/2016/4125307/http://cn.bing.com/academic/profile?id=2236292460&encoded=0&v=paper_preview&mkt=zh-cn(0) |
[14] | Zhou L M, Meng G W, Feng L, et al.Cell-based smoothed finite element method-virtual crack closure technique for a piezoelectric material of crack[J/OL].[2015-01-23].http://dx.doi.org/10.1155/2015/371083.http://cn.bing.com/academic/profile?id=1525646400&encoded=0&v=paper_preview&mkt=zh-cn(0) |
[15] | Vu-Bac N, Nguyen-Xuan H, Chen L, et al. A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis[J].Computer Modeling in Engineering and Sciences, 2011, 73(4) : 331–356.(0) |
[16] | Kim J H, Paulino G H. Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials[J].ASME Journal of Applied Mechanics, 2002, 69(4) : 502–514.DOI:10.1115/1.1467094(0) |