删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大连理工大学数学科学学院研究生导师简介-于波

大连理工大学 免费考研网/2016-05-04


于波
院系:数学科学学院
办公电话:**-8016
电子信箱:yubo@dlut.edu.cn
更新时间:2014-5-16
其他专业:运筹学与控制论★金融数学与保险精算



个人简介
出身:

1963年生于辽宁省昌图县

学习经历:

1981.09-1985.07 本科生,计算数学专业,吉林大学数学系;
1985.09-1992.07 研究生,计算数学专业,吉林大学数学研究所,
1988.7获硕士学位,1992.7获博士学位。

工作经历:

1987.08-1992.09 吉林大学计算中心,助教、讲师;
1992.09-2003.01 吉林大学数学系,讲师、副教授、教授(2000.1)
博士生导师(2001.4);
2002.10- 现在大连理工大学应用数学系,教授、博士生导师;
2005.05-2009.02 大连理工大学应用数学系,系主任;
2009.05- 现在大连理工大学数学科学学院 学术委员会主任、计算科学研究所所长;
2013.04-现在 大连理工大学盘锦校区基础部部长

国内外访问经历:

1997.10-1999.09 日本筑波大学,博士后;
2000.08-2001.01 北京大学 访问学者
2001.06-2002.02 澳大利亚新南威尔士大学,合作研究;
2008.05-2008.10 英国牛津大学,学术访问;
2011.01-2011.02 美国北卡州立大学,学术访问。

社会兼职
中国数学会常务理事
中国工业与应用数学学会理事
中国数学会计算机数学专业委员会委员
中国工业与应用数学学会数学模型专业委员会委员
《数学研究与评论》编委,2005-
ISRN Operations Research 编委,2012-
《应用数学进展》编委,2012-
《数学计算》编委,2012-
《东北数学》编委,2001-2008

辽宁省政协委员、常委,2008-
民革大连市市委副主委,2007-


研究领域(研究课题)
数值代数、数值优化、计算金融:

1. 数学规划(非线性规划、VIP、minimax问题、min-max-min问题、SDP等)的全局收敛算法和高效率算法;
2. 非线性方程组和不动点问题的全局收敛算法和高效率算法;
3. 计算金融、金融中的优化方法。


硕博研究方向
数值代数、数值优化、计算金融:

1. 数学规划(非线性规划、VIP、minimax问题、min-max-min问题、SDP等)的全局收敛算法和高效率算法;
2. 非线性方程组和不动点问题的全局收敛算法和高效率算法;
3. 计算金融、金融中的优化方法。


出版著作和论文
1] Bo Dong, Bo Yu and Yan Yu, A symmetric homotopy and hybrid polynomial system solving method for mixed trigonometric polynomial systems, Mathematics of Computation.to appear.
[2] Zhengyong Zhou and Bo Yu, The flattened aggregate constraint homotopy method for nonlinear programming problems with many nonlinear constraints, Abstract and Applied Analysis,to appear.
[3] Bo Yu, Jintao Zhang and Yanyan Xu, An efficient algorithm for computing minimal polynomials of polynomial matrices, J System Sciences and Complexity,to appear.
[4] Li Dong and Bo Yu, A spline smoothing Newton method for finite minimax problems, Journal of Engineering Mathematics, to appear.
[5] Fenlin Yang, Ke Chen, Bo Yu and D. Fang, A relaxed fixed point method for a mean curvature based denoising model, Optimization Methods and Software, Vol. 29 (2014), No. 2, 274–285, http://dx.doi.org/10.1080/**.2013.788650
[6] Liyan Xu and Bo Yu, CVaR constrained stochastic programming reformulation for stochastic nonlinear complementarity problems, Comput Optim Appl, (2014) 58:483-501, DOI 10.1007/s10589-013-9625-9
[7] Zhengyong Zhou and Bo Yu, A smoothing homotopy method for variational inequality problems on polyhedral convex sets, J Glob. Optim, 58:151-168, 2014. DOI: 10.1007/s10898-013-0033-6
[8] Yan Yu, Bo Yu and Bo Dong, Robust continuation methods for tracing solution curves of parameterized systems, Numerical Algorithms, Vol. 65 (2014), Issue 4, pp 825-841, DOI: 10.1007/s11075-013-9716-9
[9] Y. Xiao, H. J. Xiong and B. Yu, Truncated Aggregate Homotopy Method for Nonconvex Nonlinear Programming, Optimization Methods and Software,Vol. 29 (2014), No. 1, 160–176, http://dx.doi.org/10.1080/**.2012.762365
[10] Li Yang, Bo Yu and Qing Xu, A constraint shifting homotopy method for general nonlinear programming, Optimization, Vol. 63 (2014), No. 4, 585-600. DOI: http://dx.doi.org/10.1080/**. 2012.668189
[11] Zhichuan Zhu, Bo Yu and Li Yang, Globally convergent homotopy method for designing piecewise linear deterministic contractual function, Journal of Industrial and Management Optimization, Vol. 10 (2014), No. 3, 717-741. doi:10.3934/jimo.2014.10.717
[12] Li Dong, Bo Yu and Zhengyong Zhou, A constraint shifting spline smoothing homotopy method for general nonlinear programming, Pacific J. Optimization, Vol. 10 (2014), No. 1, 21-35.
[13] Xuping Zhang, Jintao Zhang, and Bo Yu, Eigenfunction expansion method for multiple solutions of semilinear elliptic equations with polynomial nonlinearity, SIAM J. Numer. Anal.,Vol. 51 (2013), No. 5, pp. 2680-2699.
[14] Li Yang and Bo Yu, A homotopy method for nonlinear semidefinite programming, Computational Optimization and Application, Comput Optim Appl, 56 (2013), 81-96,DOI 10.1007/s10589-013-9545-8.
[15] Xuping Zhang, Bo Yu and Jintao Zhang, Proof of a conjecture on a discretized elliptic equation with cubic nonlinearity, Science China: Mathematics, Vol. 56 (2013 ), No. 6: 1279–1286.
[16] Xuping Zhang and Bo Yu, A note on the relation between the newton homotopy method and the damped newton method, Electronic Transactions on Numerical Analysis, Volume 40, pp. 373-380, 2013.
[17] Changtong Luo, Shaoliang Zhang and Bo Yu, Some Modifications of Low Dimensional Simplex Evolution and Their Convergence, Optimization Methods and Software, Volume 28, Issue 1, February 2013, pages 54-81. DOI:10.1080/ **.2011.584876.
[18] Zhichuan Zhu, Bo Yu and Yufeng Shang, A modified homotopy method for solving nonconvex fixed points problems, Fixed Point Theory, 14(2013), No. 2, 531-544,http://www.math.ubbcluj.ro/nodeacj/sfptcj.html
[19] Li Dong and Bo Yu, A Spline Smoohing Newton Method for L∞ Distance Regression with Bound Constraints, ISRN Operations Research, Vol. 2013, Article ID 393482, 7 pages. http://dx.doi.org/10.1155/2013/393482
[20] Jianping Zhang, Ke Chen and Bo Yu, An iterative lagrange multiplier method for constrained total variation-based image denoising, SIAM J. Numer. Anal., 50 (2012), 983–1003.
[21] Li Yang, Bo Yu and Qing Xu, A Combined Homotopy Infeasible Interior Point Method for Nonconvex Programming, Pacific J. Optim., Vol. 8 (2012), No. 1, 89-101.
[22] Fenlin Yang, Ke Chen, Bo Yu. Effcient homotopy solution and a convex combination of ROF and LLT models for image restoration. International Journal of Numerical Analysis and Modeling, Volume 9 (2012), Number 4, Pages 907–927.
[23] Fenlin Yang, Ke Chen, Bo Yu, Homotopy Curve Tracking for Total Variation Image Restoration, J. Comput. Math., Vol. 30 (2): 177-196, 2012.
[24] Fenlin Yang, Ke Chen, Bo Yu, Homotopy method for a mean curvature-based denoising model, Applied Numerical Mathematics, Volume 62, Issue 3, March 2012, Pages 185-200.
[25] Jianping Zhang, Ke Chen and Bo Yu, A Multigrid Algorithm for the 3D ChanVese Model of Variational Image Segmentation, International Journal of Computer Mathematics, 2011. Volume 89, Issue 2, January 2012, pages 160-189
[26] Changtong Luo, Bo Yu, Low dimensional simplex evolution: a new heuristic for global optimization, J Glob Optim., 2012, Volume 52, Number 1, Pages 45-55 DOI 10.1007/s10898-011-9678-1
[27] Zhengyong Zhou, Bo Yu, A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems, Journal of Industrial and Management Optimization, Volume 7, Issue 4, 2011 Pages 977-989.
[28] Yufeng Shang and Bo Yu, A Constraint Shifting Homotopy Method for Convex Multi- objective Programming, Journal of Computational and Applied Mathematics, Volume 236, Issue 5, 1 October 2011, Pages 640-646.
[29] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S.-L. Zhang, A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides, Journal of Computational and Applied Mathematics, 235 (2011) 4095–4106.
[30] Yufeng Shang, Qing Xu and BoYu, A globally convergent noninterior point homotopy method for solving variational inequalities, Optimization Methods and Software, Vol. 26(2011), No. 6, 933-943, DOI: 10.1080/**.2010.484063.
[31] Huijuan Xiong and Bo Yu, An aggregate deformation homotopy method for constrained
min-max-min problems with maxmin constraints, Computational Optimization and Applications, 47(2010), No.3, 501-527, DOI 10.1007/s10589-008- 9229-y.
[32] Su, Menglong; Yu, Bo; Shi, Shaoyun, A boundary perturbation interior point homotopy method for solving fixed point problems. J. Math. Anal. Appl. 377(2011), no. 2, 683--694.
[33] M Su, B Yu and Jian Wang, Solving nonconvex nonlinear programming problems via a new aggregate constraint homotopy method, Nonlinear Analysis: Theory, Methods & Applications, Volume 73, Issue 8, 15 October 2010, Pages 2558–2565.
[34] Yu Xiao and Bo Yu, A truncated aggregate smoothing Newton method for minimax problems, Appl. Math. Comput., 216 (2010), 1868-1879.
[35] Xu, Qing; Dai, Xi; Yu, Bo Solving generalized Nash equilibrium problem with equality and inequality constraints. Optim. Methods Softw. 24 (2009), no. 3, 327--337.
[36] Xiaona Fan and Bo Yu, A Smoothing Homotopy Method for Solving Variational Inequalities, Nonlinear Analysis, TMA, 70 (2009), no. 1, 211--219.
[37] Qing Xu and Bo Yu, Solving the Karush-Kuhn-Tucker System of a Nonconvex Programming Problem on Unbounded Set, Nonlinear Analysis, TMA, 70 (2009), no. 2, 757--763.
[38] Bo Yu and Bo Dong, A Hybrid Polynomial System Solving Method for Mixed Trigonometric Polynomial Systems, SIAM J. Numer. Anal., 46 (2008), 1503-1518.
[39] Xiaona Fan and Bo Yu, A Polynomial Path Following Algorithm for Convex Programming, Appl. Math. Comput., 196 (2008), no. 2, 866--878.
[40] Xiaona Fan and Bo Yu, Homotopy Method for Solving Variational Inequalities with Bounded Box Constraints, Nonlinear Analysis, TMA, 68(2008), 2357-2361.
[41] Moody Chu, Del Buono, Nicoletta and Bo Yu, Structured Quadratic Inverse Eigenvalue Problem, I. Serially Linked Systems, SIAM J. Scientific Computing, 29(2007), pp. 2668-2685.
[42] Junxiang Li and Bo Yu, Truncated partitioning group correction algorithms for large-scale sparse unconstrained optimization, Appl. Math. Comput., 190(2007), 242-254.
[43] Shaoyan Cui, Xiaogang Wang, Yue Liu and Bo Yu, Effect of velocity shear on flow driven resistive wall mode, Phys. Letters A, 369(2007): 479-482.
[44] Qing Xu, Bo Yu and Guochen Feng, A Condition for Global Convergence of a Homotopy Method for Variational Inequality Problems on an Unbounded Set, Optimization Methods and Software, 22(2007), 587-599.
[45] Bo Yu and Qing Xu, On the complexity of a combined homotopy interior point method for convex programming, J. Comput. Appl. Math., 200(2007), 32-46.
[46] Shaoyan Cui, Xiaogang Wang, Yue Liu and Bo Yu, Numerical studies for the linear growth of resistive wall modes generated by plasma flows in a slab model, Physics of Plasmas, 13(2006), Art. No. 094506.
[47] Qing Xu, Bo Yu and Guochen Feng, Homotopy methods for solving variational inequalities in unbounded sets, J. Global Optimization, 31(2005), no. 1, 121-131.
[48] Zhenghua Lin, Bo Yu and Daoli Zhu, A continuation method for solving fixed points of self-mappings in general nonconvex sets, Nonlinear Analysis, 52(2003), 905-915.
[49] Bo Yu, Guochen Feng and Shaoliang Zhang, The aggregate constraint homotopy method for nonconvex nonlinear programming, Nonlinear Analysis, 45(2001), 839-847.
[50] Bo Yu and T. Kitamoto, The CHACM method for computing the characteristic polynomial of a polynomial matrix, IEICE Trans. Fundamentals, E83(2000), No.7, 1405-1410.
[51] Guochen Feng, Zhenghua Lin and Bo Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Analysis TMA, 32(1998), 761-768.
[52] Zhenghua Lin, Bo Yu and Guochen Feng, A combined homotopy interior point method for convex nonlinear programming, Appl. Math. Comput., 84(1997), 193-211.
[53] Zhenghua Lin, Yong Li and Bo Yu, A combined homotopy interior point method for general nonlinear programming problems, Appl. Math. Comput., 80(1996), 209-224.
[54] Bo Yu and Zhenghua Lin, Homotopy method for a class of nonconvex Brouwer fixed point problems, Appl. Math. Comput., 74(1996), 65-77.
[55] Zhenghua Lin and Bo Yu, A quadratically convergent scaling Newton's method for nonlinear complementarity problems, Optimization, 33(1995), 143-154.
[56] Bo Dong and Bo Yu, Homotopy Method for Mixed Trigonometric Polynomial Systems, Journal of Information and Computational Science, 4(2007), 505-514.
[57] Huijuan Xiong, Yu Wang and Bo Yu, Maximum Entropy Method for Multiple-Instance Classification, Journal of Information and Computational Science, 4(2007), 811-820.
[58] Changtong Luo and Bo Yu, Solving Min UR Problem by Triangle Evolution Algorithm with Archiving and Niche Techniques, Journal of Information and Computational Science, 4(2007), 811-820.
[59] Junxiang Li, Bo Yu and Shuting Zhang, Truncated Newton Method for Solving Minimax Problems, 2012 Fifth International Joint Conference on Computational Sciences and Optimization, 256-260.
[60] Zhengyong Zhou, Bo Yu and Yufeng Shang, A Feasible Set Swelling Homotopy Method for General Nonlinear Programming, ICMT 2011, 1884
-1887, DOI: 10. 1109/ICMT.2011.**.
[61] Zhang Jintao, Bo Yu, A subtree searching method with pruning for computing minimal m-Bézout number, ICMT 2011, 1932-1935, DOI: 10.1109/ICMT. 20 11.**.
[62] Wang Jinming, Qu Shaobo, Yu Bo, Convergence analysis of Newton-Laphson’s Method for Coupled Magnetic and flow field, Chinese Journal of computational Physics, Vol. 28 (2011), No. 6, 835-842.
[63] Bo Yu and Guochen Feng, Globally convergent interior path following methods for nonlinear programming and Brouwer fixed point problems, in Advances in Nonlinear Programming, 325-343, Kluwer Academic Publishers, 1998.
[64] Guochen Feng and Bo Yu, Combined homotopy interior point method for nonlinear programming problems, in Advances in Numerical Mathematics; Proceedings of the Second Japan-China Seminar on Numerical Mahtematics (Tokyo, 1994), 9-16, Lecture Notes Numer. Appl. Anal., 14, Kinokuniya, Tokyo, 1995.
[65] Guoxin Liu and Bo Yu, Homotopy continuation method for linear complementarity problems, Northeast. Math. J.,20(2004),309-316.
[66] Bo Yu and Guoxin Liu, The aggretate homotopy method for constrained sequential minimax problem, Northeast. Math. J., 19 (2003), 287-290.
[67] Qing Xu, Guochen Feng and Bo Yu, Globally convergent interior point methods for variational inequalities in unbounded sets, Northeast. Math. J., 18(2002), 9-14.
[68] Qing Xu, Guochen Feng and Bo Yu, Homotopy method for variational inequalities, 数学进展, 3(2001), 477-479.
[69] Bo Yu, Liqun Qi and Guoxin Liu, A modified aggregate homotopy method for convex minimax problems, Proceedings of ICOTA'2001, Vol. 1, 32-37.
[70] Qinghuai Liu, Bo Yu and Guochen Feng, An interior point path-following method for nonconvex programming with quasi normal cone condition, 数学进展, 29(2000), No.4, 281-282.
[71] Bo Yu, Qinghuai Liu and Guochen Feng, A combined homotopy interior point method for nonconvex programming with pseudo cone condition, Northeast. Math. J., 16(2000),383-386.
[72] Effect of the Conducting Boundary Location on Resistive Wall Mode Instability, The 16th International Conference on Gas Discharges and Their Applications, Vol. 1, 445-448, 2006.
[73] Changtong Luo and Bo Yu Low dimensional simplex evolution - a hybrid heuristic for global optimization, 2007 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 470-4 2007.
[74] Luo, Changtong; Zhang, Shaoliang; Yu, Bo, Low dimensional reproduction strategy for realcoded evolutionary algorithms, Proceedings - 7th IEEE/ACIS International Conference on Computer and Information Science, IEEE/ACIS ICIS 2008.
[75] Shuyan Dong, Jintao Zhang,Bo Yu, Changtong Luo and Shaoliang Zhang, A Genetic Algorithm for Finding Minimal Multihomogeneous Bézout Number, Computer and Information Science, 2008. ICIS 08. Seventh IEEE/ACIS International Conference on, 301-305.
[76] Cui Shaoyan et al, Effect of the Conducting Boundary Location on Resistive Wall Mode Instability, The 16th International Conference on Gas Discharges and Their Applications, Vol. 1, 445-448, 2006
[77] Luo Changtong and Yu Bo, Triangle evolution-a hybrid heuristic for global optimization, Journal of Mathematical Research & Exposition, 29(2009), No. 2, 237-246.
[78] 于波、董波、曹小飞、杨德森,信号处理中一类非线性方程组的快速求解 系统科学与数学,第28卷(2008),第8期,1002-1019.
[79] 于波、商玉凤,解非凸规划问题的动边界组合同伦方法,数学研究与评论,第26卷(2006),第4期,831-834.
[80] 商玉凤、于波,凸规划的动边界组合同伦方法及其收敛性,吉林大学学报(理科版),第44卷(2006),第3期,357-361.
[81] 张淑婷、于波,有限极大极小问题的拟牛顿法,吉林大学学报(理科版),第44卷(2006),第3期,367-369.
[82] 商玉凤、于波,解凸规划问题的动边界组合同伦方法,高等学校计算数学学报,Vol. 27(2005),专刊,311-315.
[83] 张淑婷、于波,非凸广义半无限极大极小问题的全局收敛方法,高等学校计算数学学报,Vol. 27(2005),专刊,316-319.
[84] 刘庆怀、于波、冯果忱,基于拟法锥条件的非凸非线性规划问题的同伦内点算法,应用数学学报,第26卷(2003), 第2期, 372-377.
[85] 刘国新、冯果忱、于波,序列极大极小问题的凝聚同伦方法,吉林大学学报(理科版),第41卷(2003),第2期, 155-156.
[86] 林正华、于晓林、于波,连续化方法解约束非凸规划问题,计算数学,21(1999), No.3, 309-316.
[87] 林正华、于波,非线性特征值问题的大范围求解,吉林大学自然科学学报,1994, No.1, 27-30.
[88] 林正华、于波,二次规划的Q-平方收敛算法,吉林大学自然科学学报,1994, No.1, 45-48.
[89] 于波、林正华,一类非凸Brouwer不动点问题的同伦算法,吉林大学自然科学学报,1994, No.2, 37- 38.
[90] Bo Yu and Guochen Feng, The random product homotopy for solving polynomial systems in , in Computer Mathematics (Tianjin, 1991), 36-45, World Sci. Publishing, River Edge, NJ, 1993.
[91] 于波、冯果忱,亏欠多项式组解的个数和同伦算法,数学科学研讨会论文集,吉林大学出版社,1992.
[92] 张德统、于波,用单纯形方法解双参数特征值问题,高校计算数学学报,13 (1991), No.3, 283-292.

工作成果(奖励、专利等)
主持科研项目:

1. 代数簇计算的理论和方法,国家自然科学基金青年基金项目(**),1996年1月至1998年12月
2. 最优化的同伦方法和代数几何方法,国家自然科学基金项目(**),2001年1月至2003年12月
3. 非线性等式与不等式组的有效解法及其应用,国家自然科学基金项目(**),2007年1月至2009年12月
4. 非凸非光滑优化问题的高效率大范围收敛解法,国家自然科学基金项目(**),2012.1-2015.12
5. 高维数据的低维非线性逼近中的非凸优化模型的有效解法和软件, 国家自然科学基金重大研究计划(高性能科学计算的基础算法与可计算建模,培育项目,**),2013.1-2015.12
6. 非凸非光滑优化及其在神经网络和图形图像中的应用,教育部博士点基金(200601 41029),2007年1月至2009年12月
7. 多项式方程组和最优化的整体解法, 教育部留学回国人员科研启动基金, 2001年9月-2004年9月
8. 聚变能研究中的数学问题,大连理工大学“数学+X”交叉学科专项
9. 螺栓连接结构建模中的非凸优化问题,大连理工大学数学+X”学科交叉前沿科研专题(DUT11SX01)
10. 多元水声矢量方程的快速算法和软件研制,军工项目子课题,2002年7月-2002年8月
11. 满意度分析算法和软件研制,横向课题,2004年6月-2004年10月
12. 边界条件设置、物理尺寸相容性测试、数据采集、调运程序评估集成软件开发,中国船舶工业集团公司委托项目, 2006年1月-2006年7月
13. 比例模型数据采集与图像处理系统开发研制,中国石油辽河油田分公司委托项目, 2006年12月-2007年5月
14. 火烧驱物理模拟数据采集与图像处理系统开发研制, 中国石油辽河油田分公司委托项目,2007年12月-2008年6月

获得的奖励和荣誉:

1. 吉林省教学成果奖(二等奖) 1997年
2. 吉林省青年科技奖2000年
3. 辽宁省自然科学学术成果奖(2003年二等奖、2007年、2010年一等奖)
4.《数值分析》被评为辽宁省精品教程2006年
5. 大连市优秀专家2007年
6.《数值分析》被评为国家精品教程2008年
7. 信息与计算科学专业系列课程教学团队被评为国家级教学团队 2009年
8. 辽宁省自然科学三等奖2009年
9. “信息与计算科学”高等学校特色专业建设点负责人,2007年.
10. 辽宁省教学成果一等奖 2009年.
11. “信息与计算科学”辽宁省普通高校本科示范专业负责人,2008年.
12. 辽宁省教学成果二等奖,2012年.
13. 《数值分析》被评为辽宁省精品资源共享课、国家级精品资源共享课,2013年.

相关话题/科学学院 数学