删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

苏州纳米所等开发出可以“看到”载流子的新型纳米成像技术_苏州纳米所

苏州纳米所 免费考研网/2018-05-14

目前,纳米材料已经被日益广泛地应用在电子、光电、生物电子、传感以及能源等领域的各种器件中。因此,理解和表征纳米材料的电学性能的不仅是基础科学研究的兴趣所在,也是其广泛实用化中的迫切需求。但是,传统的场效应晶体管(field-effect transistor, FET)方法在纳米材料电学性能的表征中遭遇到器件制备过程复杂,材料-电极欧姆接触不易实现以及检测通量较低等问题。

  中科院苏州纳米所陈立桅研究员课题组与合作者们共同发展了一种名为介电力显微术(dielectric force microscopy, DFM)的新型功能成像技术来解决上诉难题。相关综述发表于近期的 Accounts of Chemical Research 期刊(Accounts of Chemical Research 48:1788 (2015) )。

  半导体和金属材料对于外部电场介电响应的主要贡献来自于载流子迁移引起的宏观极化。因此,材料中的载流子浓度及其迁移率既决定了该材料的介电响应也决定了它的电导率。借助于扫描探针技术对微小作用力的超灵敏检测(~pN),DFM通过测量材料的诱导偶极与针尖上的电荷之间的相互作用力来表征纳米材料的介电响应。此成像模式无需电极接触即可“看”到纳米材料中的载流子 (图1a)。以单壁碳纳米管(直径~1nm)和氧化锌纳米线(直径~30-50nm)作为研究模型,DFM成功地实现了对纳米材料介电常数的测量(Nano Letters 7:2729 (2007))、半导体与金属导电性的分辨 (Nano Letters 9:1668 (2009))以及半导体材料中载流子类型的判定 (Journal of Physical Chemistry C 116:7158 (2012))(图1e-g)。更为有趣的是,DFM展现出传统FET方法无法实现的~20nm 的空间分辨率。

  此外,陈立桅研究员与其合作者们通过比对同一单壁碳管的DFM与FET测量结果,证实了DFM与FET互为平行测量手段 (Nano Research 7:1623 (2014))。相关研究结果揭示了DFM信号的门控调制比(DFM信号在不同门电压下的比值)正比于FET器件开关比的对数(图1b)。这个半对数关系得到微观层面的Drude模型的解释和证实(图1c)。这一模型将对未来DFM技术在不同材料与器件体系中的应用提供一个理论框架。

  在纳米材料电学性质测量领域中,由斯坦福大学沈志勋(Zhi-Xun Shen)教授开发的扫描近场微波显微术(scanning near-field microwave microscopy)具有与DFM类似的特性与功能(Review of Scientific Instruments 79:063703 (2008))。扫描近场微波显微术与DFM均具有无接触测量和纳米尺度空间分辨率等特性。不同的是,扫描近场微波显微术和DFM分别测量材料的高频和低频介电性质。DFM无需昂贵的高频网络分析器和特制的扫描探针,因而便于应用在多种复杂成像环境中。DFM这一成像模式可能在未来的基础研究与工业在线监测领域获得广泛应用。

  相关系列工作由国家自然科学基金、中科院先导专项计划、江苏省自然科学基金、美国化学会石油研究基金会和苏州纳米科技协同创新中心提供资助。



图1.(a)DFM二次扫描模式示意图。(b)DFM门控比与FET器件开关比之间的半对数关联性。(c)DFM信号与载流子浓度和迁移率依赖性的数值模拟结果。DFM纳米尺度空间分辨率展示:内部具有金属-半导体结的单壁碳管的形貌像(d)和介电响应像(e-g)。

相关话题/测量 材料 纳米 微波 半导体

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 苏州纳米所薄膜光伏器件机理研究取得新进展_苏州纳米所
    薄膜光伏器件由于其低成本、高效率、易加工和柔性便携等优点,被认为是最具应用前景的新型太阳能电池,因而受到广泛研究和关注。  光伏器件内部的能级排布如何影响器件工作机理,例如光生载流子的分离、输运、复合和收集等基本过程,从而决定器件的能量转换效率是领域里的一个研究热点。但是,目前还没有很好的方法来有效 ...
    苏州纳米所 免费考研网 2018-05-14
  • 【MaterialsView China】铝离子电解质进一步推动电致变色领域发展_苏州纳米所
    电致变色是指材料在紫外、可见光和近红外区域的光学属性在外加电场作用下产生稳定的可逆变化现象,在电子纸、显示器、蓝镜和智能窗等产品中都能见到电致变色材料的身影。近年来,随着电致变色技术在汽车、建筑、印刷等大领域的应用,电致变色的相关研究出现了空前的热潮,人们通过寻找新材料、设计新结构等方式将电致变色器 ...
    苏州纳米所 免费考研网 2018-05-14
  • 苏州纳米所在硫化锂电池原位电镜表征与循环稳定性调控方面取得新进展_苏州纳米所
    随着社会和科技的发展,人类对电化学储能技术的需求日益增加,新兴储能系统-锂硫电池具有理论容量高、成本低、环境友好等优点,备受国内外研究者的关注。而研发高容量锂硫电池正极材料,对推动新能源动力汽车、便携式电子设备等领域的发展至关重要。  硫化锂(Li2S)材料理论容量高达1166mAhg-1,是其它过 ...
    苏州纳米所 免费考研网 2018-05-14
  • 【科技日报】多功能纳米材料可精准诊疗肿瘤_苏州纳米所
    肿瘤治疗首先要对其准确诊断。但目前肿瘤诊断常用的成像技术对肿瘤的边界不能精确定位,影响了治疗。记者从中科院获悉,我国科学家成功构建出能够同时对肿瘤进行诊断和治疗的多功能纳米材料,既能对肿瘤精准定位,也能对肿瘤做光热治疗。相关论文近日在线发表国际一流学术刊物《先进材料》上。  这种新型纳米材料是由中科 ...
    苏州纳米所 免费考研网 2018-05-14
  • 苏州纳米所等在三价阳离子电解质应用于电致变色领域研究取得新进展_苏州纳米所
    电致变色是指材料在紫外、可见光和近红外区域的光学属性在外加电场作用下产生稳定的可逆变化现象,在电子纸、显示器、蓝镜和智能窗等产品中都能见到电致变色材料的身影。近年来,随着电致变色技术在汽车、建筑、印刷等大领域的应用,电致变色的相关研究出现了空前的热潮,人们通过寻找新材料、设计新结构等方式将电致变色器 ...
    苏州纳米所 免费考研网 2018-05-14
  • 【中国科学报】中科院苏州纳米所构建多功能纳米诊疗一体化平台_苏州纳米所
    记者日前从中科院苏州纳米技术与纳米仿生研究所获悉,该所张智军团队与苏州大学陈华兵团队和厦门大学任斌团队等合作,成功构建出多功能纳米诊疗一体化平台。该平台具有肿瘤磁共振/光声/表面增强拉曼三模态成像、手术切除和光热治疗等多种功能。相关成果日前在线发表于《先进材料》杂志。  研究人员通过构建具有高粗糙度 ...
    苏州纳米所 免费考研网 2018-05-14
  • 【中国科学报】科学家用纳米技术实现低能耗除霜_苏州纳米所
    记者日前从中科院苏州纳米技术与纳米仿生研究所获悉,该所高雪峰团队利用纳米加工技术,实现了低能耗除霜,为进一步设计开发更节能的空调/热泵铝翅换热器奠定了基础。相关成果发表于美国化学会《应用材料界面》杂志。  热泵/空调换热器的翅片表面在低温潮湿环境下很容易凝露结霜并堵塞其狭窄风道。这一问题不仅会导致换 ...
    苏州纳米所 免费考研网 2018-05-14
  • 苏州纳米所等发现提升半导体氧化物SERS性能的新方法_苏州纳米所
    自上世纪70年代表面增强拉曼光谱(SERS)面世后,贵金属基底的引入将拉曼检测灵敏度提升了百万倍,克服了传统拉曼光谱与生俱来的信号微弱等缺点,使得拉曼检测在食品安全、环境监测、生命科学等领域得到广泛应用,并迅速成长为最为灵敏的表面物种现场谱学检测技术之一。然而,人们欣喜的同时却遗憾地发现,SERS仅 ...
    苏州纳米所 免费考研网 2018-05-14
  • 【中国科学报】中科院苏州纳米所发现半导体氧化物表面增强拉曼光谱新方法_苏州纳米所
    记者今天从中科院苏州纳米技术与纳米仿生研究所获悉,该所研究员赵志刚课题组与苏州大学耿凤霞课题组合作证实,恰当地调制半导体氧化物中的氧缺陷,可显著提升其表面增强拉曼光谱(SERS)性能。该发现突破常规SERS技术中贵金属基底的局限性,进一步拓宽了半导体氧化物作为基底材料在SERS检测中的应用范畴。相关 ...
    苏州纳米所 免费考研网 2018-05-14
  • 苏州纳米所在冷凝微滴自去除及低能耗无霜纳米技术开发上取得新进展_苏州纳米所
    冷凝微滴自驱离纳米仿生界面近年来已经引起科学界和产业界的高度关注,因为这种新型传热传质界面可用于设计开发高性能相变基热控器件以满足电子器件日益增长的散热需求、研制更节能环保的热泵/空调换热器以及开发其它新型的节能热控系统。众所周知,热泵/空调换热器的翅片表面在低温潮湿环境下很容易凝露结霜并堵塞其狭窄 ...
    苏州纳米所 免费考研网 2018-05-14