删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院长春应用化学研究所导师教师信息介绍简介-张洪杰

本站小编 免费考研网/2020-03-19


张洪杰

说明: 小二寸单张  张洪杰 院士,博士,中国科学院长春应用化学研究所研究员。1997年获国家杰出青年基金,1998年获香港求是基金会杰出青年学者奖。2010年担任国家基金委创新群体学术带头人;2014年担任国家“973”项目首席科学家;2016年担任国家基金委重大项目负责人。张洪杰院士现任中国稀土行业协会会长,英国皇家化学会士,是中国科学院长春应用化学研究所无机化学学科带头人。鉴于他学术成就突出,并在学科发展、人才凝聚及国家重点实验室建设等方面做出的重要贡献,2013年当选为中国科学院院士,2015年当选为发展中国家科学院院士。  
教育和工作经历
1994-至今:中科院长春应化所,研究员,博士生导师,历任中科院稀土化学与物理重点实验室副主任、主任,稀土资源利用国家重点实验室主任
1989-1993:法国波尔多第一大学,法国国家科研中心固体化学实验室,获固体化学、材料科学博士学位
1985-1989:中科院长春应化所,中科院稀土化学与物理重点实验室,助理研究员
1982-1985:中科院长春应化所,获硕士学位
1978-1982:中科院长春应化所,研究实习员
1974-1978:北京大学化学系,获学士学位

代表性研究成果
张洪杰研究员长期从事稀土功能材料的研究,以材料的结构与功能关系为研究重点,致力于解决影响学科发展的关键科学问题,发展了系列材料制备的新方法和技术,并将基础、高技术及应用研究有机结合,研制出的稀土新材料已成功应用于汽车、照明、航天航空和国防军工等领域,满足了国家的重大战略需求,取得了一系列创新性研究成果。开创性地开拓了酸碱催化两步溶胶-凝胶制备新方法,制备了一系列性能优异、共价键嫁接的稀土杂化发光材料,被公认为是实现杂化发光材料应用的重要途径;克服稀土电致发光效率低、光谱稳定性差的难题,进一步发展了稀土掺杂的过渡金属电致发光器件,提高了效率和色纯度;针对超高声速飞行器风洞测温的重大需求,研究解决了温敏涂层全表面精确测量的关键科学问题,首次使稀土发光材料在风洞测温型号项目上得到应用;针对直流LED存在的问题,提出交流LED原创思想,解决了交流供电频闪的世界难题,获得自主知识产权的交流LED稀土发光材料,与四川新力光源合作,系列产品已通过美国和欧盟质量认证,并在国内外市场销售;针对航天航空及兵器减重的迫切需求,首次研制出高强轻质的稀土镁合金,为我国神舟6号飞船减重13公斤,为国家某"重点工程"制备多用途轻型导弹壳体,实现了武器的轻量化,现已定型并装备部队。相关学术成果得到了国际学术界同行的公认,产生了重要的国际影响。目前,在Chem. Soc. Rev.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Adv. Funct. Mater.、Biomaterials等国际主流期刊已发表学术论文已发表SCI论文440余篇,被他人正面引用20000多次;主办国内外学术会议12次,国内外大会和邀请报告80余次;担任10种国内外权威期刊的主编、副主编或编委;已授权发明专利72项;以第一完成人获国家自然科学二等奖(2010年)、中科院杰出科技成就集体奖(2015年)、吉林省科学技术特殊贡献奖(2015年)、吉林省技术发明一等奖(2013年)、澳大利亚金袋鼠世界创新奖(2013年)、吉林省政府创新创业人才奖(2012年)、吉林省科技进步一等奖(2007年)。
 
1. 功能稀土发光材料
以稀土发光材料的结构与功能关系为研究重点,围绕高附加值新型稀土发光功能材料开展原创性的研究工作,将基础、高技术和应用研究三者有机地结合,取得一系列创新性研究成果。设计构建稀土上/下转换发光纳米结构,评估其在生物诊疗、pH传感和温度传感等方面的潜在应用价值;构建新型稀土MOFs晶体材料,研究其吸附、分子识别、检测和质子导电等性质;提出交流LED原创思想,首次获得自主知识产权的余辉可控交流LED稀土荧光粉和器件技术,解决了交流驱动产生频闪的世界重大难题。


2. 稀土催化材料
CeO2是变价金属氧化物,具有较高的储存氧和释放氧的能力,在催化净化汽车尾气、消除污染物等在保护生态环境方面具有的深远意义,近几年成为催化应用研究领域的热点之一。综合利用多种化学合成方法,针对CeO2及其复合催化材料的定向设计合成与功能化展开研究工作,以催化剂的结构、组成与功能关系为研究重点,致力于解决影响催化材料性能的关键科学问题,发展了系列CeO2及其复合催化材料的新方法和新技术。


3. 稀土敏化有机电致发光器件
依据三元掺杂器件研究基础,采用稀土配合物作为敏化材料,基于其较宽的能级和较长的激发态寿命,打破常规地设计新型高性能稀土/过渡金属配合物共掺杂OLEDs。采用三元微量掺杂技术将稀土配合物引入发光层中,通过精密控制稀土配合物的掺杂浓度使其起到电子束缚中心与能量传递阶梯的作用,结合器件结构优化提高器件的综合性能。最后,通过进一步优化过渡金属配合物的掺杂浓度,大幅提高了器件的电流效率、功率效率及亮度。初步的研究结果显示,所得新型高性能稀土/过渡金属配合物共掺杂OLEDs具有显著提高的性能,相关研究拓宽了稀土配合物在有机电致发光领域的应用范围,并实现稀土配合物与过渡金属配合物的优势互补,为新型高性能有机电致发光器件的设计与优化提供了新思路。

 


4. 稀土镁合金材料
针对我国稀土镁合金的设计、变形加工、耐腐蚀性以及大型结构件的工程化应用方面存在的问题,开展了广泛而深入的研究工作。(1) 针对我国提取镨、钕后的镧铈混合稀土大量滞销、成本低廉的现状,开发出新型Mg-Zn-Ca-Ce/La系稀土镁合金,并采用二次加工进一步强化合金的基面织构,显著提高了合金的力学性能,成功制备出低成本、高强度的稀土镁合金材料,实现了稀土资源的平衡利用;(2) 镁及其合金的耐蚀性较差,通过化学键合法在镁合金表面设计并成功制备出硅烷/功能化石墨烯复合涂层,显著改善了合金的耐蚀性,更由于石墨烯具有极高的硬度和良好的润滑性,使得合金的耐磨性也明显提高;(3) 针对稀土元素在镁合金中偏析现象严重问题,采用下沉阴极技术,电解制备一系列组织、成分均匀的稀土镁中间合金,为未来稀土镁应用合金的大规模工程化应用提供技术保障,并成功研制出直径600 mm的大型耐热镁合金结构件,150 oC条件下的拉伸屈服强度大于160 MPa。


代表性学术论文
1. Feng, J.; Zhang, H. J.*, Hybrid materials based on lanthanide organic complexes: a review, Chem. Soc. Rev., 2013, 42(1), 387-410.
2. Shi, W. D.; Song, S. Y.; Zhang, H. J.*, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chem. Soc. Rev., 2013, 42(13), 5714-5743.
3. Meng, X.; Wang, H. N.; Song, S. Y.*; Zhang, H. J.*, Proton-conducting crystalline porous materials, Chem. Soc. Rev., 2017, 46(2), 464-480.
4. Wang, Y.; Zheng, K. Z.; Song, S. Y.; Fan, D. Y.; Zhang, H. J.*; Liu, X. G.*, Remote manipulation of upconversion luminescence, Chem. Soc. Rev., 2018, 47(17), 6473-6485.
5. Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J.*, Pt@CeO2 Multicore@Shell Self-Assembled Nanospheres: Clean Synthesis, Structure Optimization, and Catalytic Applications, J. Am. Chem. Soc., 2013, 135(42), 15864-15872.
6. Shi, W. D.; Yu, J. B.; Wang, H. S.; Zhang, H. J.*, Hydrothermal synthesis of single-crystalline antimony telluride nanobelts, J. Am. Chem. Soc., 2006, 128(51) 16490-16491.
7. Bi, Y. F.; Wang, X. T.; Liao, W. P.*; Wang, X. F.; Wang, X. W.; Zhang, H. J.*; Gao, S.*, A {Co-32} Nanosphere Supported by p-tert-Butylthiacalix[4]arene, J. Am. Chem. Soc., 2009, 131(33), 11650-11651.
8. Xu, G. H.; Zhang, X. G.; Guo, P.; Pan, C. L.; Zhang, H. J.*; Wang, C.*, Mn-II-based MIL-53 Analogues: Synthesis Using Neutral Bridging mu(2)-Ligands and Application in Liquid-Phase Adsorption and Separation of C6-C8 Aromatics, J. Am. Chem. Soc., 2010, 132(11), 3656-3657.
9. Guo, Y. N.; Xu, G. F.; Gamez, P.; Zhao, L.; Lin, S. Y.; Deng, R. P.; Tang, J. K.*; Zhang, H. J.*, Two-Step Relaxation in a Linear Tetranuclear Dysprosium(III) Aggregate Showing Single-Molecule Magnet Behavior, J. Am. Chem. Soc., 2010, 132(25), 8538-8539.
10. Leng, M.; Liu, M. Z.; Zhang Y. B.; Wang Z. Q.; Yu, C.; Yang X. G.; Zhang, H. J.*; Wang, C.*, Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic CO Oxidation Activity, J. Am. Chem. Soc., 2010, 132(48), 17084-17087.
11. Guo, Y. N.; Xu, G. F.; Wernsdorfer, W.; Ungur, L.; Guo, Y.; Tang, J. K.*; Zhang, H. J.*; Chibotaru, L. F.*; Powell, A. K., Strong Axiality and Ising Exchange Interaction Suppress Zero-Field Tunneling of Magnetization of an Asymmetric Dy-2 Single-Molecule Magnet, J. Am. Chem. Soc., 2011, 133(31), 11948-11951.
12. Li, X. Y.; Liu, X. W.; Chevrier, D. M.; Qin, X.; Xie, X. J.; Song, S. Y.; Zhang, H. J.*; Zhang, P.*; Liu, X. G.*, Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles, Angew. Chem. Int. Edit., 2015, 54(45), 13312-13317.
13. Wang, X.; Zhang, Y. B.; Song, S. Y.*; Yang, X. G.; Wang, Z.; Jin, R. C.*; Zhang, H. J.*, L-Arginine-Triggered Self-Assembly of CeO2 Nanosheats on Palladium Nanoparticles in Water, Angew. Chem. Int. Edit., 2016, 55(14), 4542-4546.
14. Wang, Y. H.; Song, S. Y.; Liu, J. H.; Liu, D. P.*; Zhang, H. J.*, ZnO-Functionalized Upconverting Nanotheranostic Agent: Multi-Modality Imaging-Guided Chemotherapy with On-Demand Drug Release Triggered by pH, Angew. Chem. Int. Edit., 2015, 54(2), 536-540.
15. Song, G. Y.; Su, Y.; Periana, R. A.; Crabtree, R. H.; Han, K.*; Zhang, H. J.*; Li, X. W.*, Anion-Exchange-Triggered 1,3-Shift of an NH Proton to Iridium in Protic N-Heterocyclic Carbenes: Hydrogen-Bonding and Ion-Pairing Effects, Angew. Chem. Int. Edit., 2010, 49(5), 912-917.
16. Wang, Y.; Li, H. R.*; Feng, Y.; Zhang, H. J.*; Calzaferri, G.*; Ren, T. Z., Orienting Zeolite L Microcrystals with a Functional Linker, Angew. Chem. Int. Edit., 2010, 49(8), 1434-1438.
17. Liu, M.; Liao, W. P.*; Hu, C. H.; Du, S. C.; Zhang, H. J.*, Calixarene-Based Nanoscale Coordination Cages, Angew. Chem. Int. Edit., 2012, 51(7), 1585-1588.
18. Lin, S. Y.; Wernsdorfer, W.; Ungur. L.; Powell, A. K.; Guo, Y. N.; Tang, J. K.*; Zhao, L.; Chibotaru, L. F.*; Zhang, H. J.*, Coupling Dy3 Triangles to Maximize the Toroidal Moment, Angew. Chem. Int. Ed., 2012, 51(51), 12767-12771.
19. Li, J.; Song, S. Y.*; Long, Y.; Wu, L. L.; Wang, X.; Xing, Y.; Jin, R. C.*; Liu, X. G.; Zhang, H. J.*, Investigating the Hybrid-Structure-Effect of CeO2-Encapsulated Au Nanostructures on the Transfer Coupling of Nitrobenzene, Adv. Mater., 2018, 30(7), 1704416.
20. Zheng, K. Z.; Han, S. Y.; Zeng, X.; Wu, Y. M.; Song, S. Y.; Zhang, H. J.*, Liu, X. G.*, Rewritable optical memory through high-registry orthogonal upconversion, Adv. Mater., 2018, 30(30), 1801726.
21. Lei, P. P.; An, R.; Yao, S.; Wang, Q. S.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.;* Zhang, H. J.*, Ultrafast Synthesis of Novel Hexagonal Phase NaBiF4 Upconversion Nanoparticles at Room Temperature, Adv. Mater., 2017, 29(22), 1700505.
22. Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.* Zhang, H. J.*, Achieving the Trade-Off between Selectivity and Activity in Semihydrogenation of Alkynes by Fabrication of (Asymmetrical Pd@Ag Core)@(CeO2 Shell) Nanocatalysts via Autoredox Reaction, Adv. Mater., 2017, 29(8), 1605332.
23. Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.;* Liu, X. G.; Zhang, H. J.*, Confining the Nucleation of Pt to In Situ Form (Pt-Enriched Cage)@CeO2 Core@Shell Nanostructure as Excellent Catalysts for Hydrogenation Reactions, Adv. Mater., 2017, 29(28), 1700495.
24. Shi, W. D.; Zhou, L.; Song, S. Y.; Yang, J. H.; Zhang, H. J.*, Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates, Adv. Mater., 2008, 20(10), 1892-1897.
25. Guo, H. L.; Zhu, Y. Z.; Qiu, S. L.*; Lercher, J. A.*; Zhang, H. J.*, Coordination Modulation Induced Synthesis of Nanoscale Eu(1-x)Tb(x-)Metal-Organic Frameworks for Luminescent Thin Films, Adv. Mater., 2010, 22(37), 4190-4192.
26. Zhu, Y. C.; Zhou, L.; Li, H. Y.; Xu, Q. L.; Teng, M. Y.; Zheng, Y. X.*; Zuo, J. L.*; Zhang, H. J.*; You, X. Z., Highly Efficient Green and Blue-Green Phosphorescent OLEDs Based on Iridium Complexes with the Tetraphenylimidodiphosphinate Ligand, Adv. Mater., 2011, 23(35), 4041-4046.
27. Liu, F.; Song, S. Y.; Xue, D. F.*; Zhang, H. J.*, Folded Structured Graphene Paper for High Performance Electrode Materials, Adv. Mater., 2012, 24(8), 1089-1094.
28. Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.*; Liu, J. H.*; Zhang, H. J.*, All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Microenvironment Ability for Effective Tumor Eradication, ACS Nano, 2018, 12(5), 4886-4893.
29. Wang, X.; Liu, D. P.; Li, J. Q.; Zhen, J. M.; Zhang, H. J.*, Clean Synthesis of Cu2O@CeO2 Core@shell Nanocubes with Highly Active Interface, NPG Asia Mater., 2015, 7, e158.
30. Song, S. Y.; Wang, X.; Zhang, H. J.*, CeO2-encapsulated noble metal nanocatalysts: enhanced activity and stability for catalytic application, NPG Asia Mater., 2015, 7, e179.
31. Lei, P. P.; An, R.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.*; Zhang, H. J.*, Ultrafast Synthesis of Ultrasmall Poly(Vinylpyrrolidone)-Protected Bismuth Nanodots as a Multifunctional Theranostic Agent for In Vivo Dual-Modal CT/Photothermal-Imaging-Guided Photothermal Therapy, Adv. Funct. Mater., 2017, 27(35), 1702018.
32. Song, X. Z.; Song, S. Y.*; Zhao, S. N.; Hao, Z. M.; Zhu, M.; Meng, X.; Wu, L. L.; Zhang, H. J.*, Single-Crystal-to-Single-Crystal Transformation of a Europium(III) Metal-Organic Framework Producing a Multi-responsive Luminescent Sensor, Adv. Funct. Mater., 2014, 24(26), 4034-4041.
33. Sun, L. N.; Zhang, H. J.*; Fu, L. S.; Liu, F. Y.; Meng, Q. G.; Peng, C. Y.; Yu, J. B., A new sol-gel material doped with an erbium complex and its potential optical-amplification application, Adv. Funct. Mater., 2005, 15(6), 1041-1048.
34. Song, S. Y.; Zhang, Y.; Xing, Y.; Wang, C.; Feng, J.; Shi, W. D.; Zheng, G. L.; Zhang, H. J.*, Rectangular AgIn(WO4)(2) nanotubes: A promising photoelectric material, Adv. Funct. Mater., 2008, 18(16), 2328-2334.
35. Sun, L. N.*; Wei, R. Y.; Feng, J.; Zhang, H. J.*, Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects, Coord. Chem. Rev., 2018, 364, 10-32.
36. Zhao, S. N.; Song, X. Z.; Song, S. Y.*; Zhang, H. J.*, Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors, Coord. Chem. Rev., 2017, 337, 80-96.
37. Li, J.; Song, S. Y.*; Long, Y.; Yao, S.; Ge, X.; Wu, L. L.; Zhang, Y. B.*; Wang, X.; Yang, X. G.; Zhang, H. J.*, A general one-pot strategy for the synthesis of Au@multi-oxide yolk@shell nanospheres with enhanced catalytic performance, Chem. Sci., 2018, 9(38), 7569-7574.
38. Wang, X.; Zhao, S. N.; Zhang, Y. B.; Wang, Z.; Feng, J.; Song, S. Y.*; Zhang, H. J.*, CeO2 Nanowires Self-inserted into Porous Co3O4 Frameworks as High-Performance “Noble Metal Free” Hetero-catalysts, Chem. Sci., 2016, 7(2), 1109-1114.
39. Wang, Y. H.; Ding, X.; Wang, F.; Li, J. Q.; Song, S. Y.*; Zhang, H. J.*, Nanoconfined Nitrogen-Doped Carbon-Coated MnO Nanoparticles in Graphene Enabling High Performance for Lithium-Ion Batteries and Oxygen Reduction Reaction, Chem. Sci., 2016, 7(7), 4284-4290.
40. Ding, X.; Liu, J. H.; Li, J. Q.; Wang, F.; Wang, Y. H.*; Song, S. Y.*; Zhang, H. J.*, Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy, Chem. Sci., 2016, 7(11), 6695-6700.
41. Wang, X.; Liu, D. P.*; Li, J. Q.; Zhen, J. M.; Wang, F.; Zhang, H. J.*, γ-Al2O3 supported Pd@CeO2 core@shell nanospheres: salting-out assisted growth and self-assembly, and their catalytic performance in CO oxidation, Chem. Sci., 2015, 6(5), 2877-2884.
42. Song, S. Y.; Wang, X.; Li, S. L.; Wang, Z.; Zhu, Q.; Zhang, H. J.*, Pt nanohelices with highly ordered horizontal pore channels as enhanced photothermal materials, Chem. Sci., 2015, 6(11), 6420-6424.
43. Long, Y.; Song, S. Y.*; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Jin, R. C.; Zhang, H. J.*, Pt/CeO2@MOF Core@Shell Nanoreactor for Selective Hydrogenation of Furfural via the Channel Screening Effect, ACS Catal., 2018, 8(9), 8506-8512.
44. Zhai, X. S.; Lei, P. P.; Zhang, P.; Wang, Z.; Song, S. Y.; Xu, X.; Liu, X. L.; Feng, J.*; Zhang, H. J.*, Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes, Biomaterials, 2015, 65, 115-123.
45. Wang, Y. H.; Wang, H. G.; Liu, D. P.; Song, S. Y.; Wang, X.; Zhang, H. J.*, Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy, Biomaterials, 2013, 34 (31), 7715-7724.

代表性专利
1. 黄光余辉材料及其制备方法和使用它的LED照明装置 中国发明专利 ZL 200910307357.3
2. 交流LED白光发光装置 中国发明专利 ZL 201010537984.9  
3. 一种交流LED发光装置 中国发明专利 ZL 201010537835.2
4. WHITE LED DEVICE HAVING LED CHIPS DIRECTLY DRIVEN BY ALTERNATING CURRENT PCT专利(美国) US 9185761B2
5. YELLOW LIGHT AFTERGLOW MATERIAL AND PREPARATION METHOD THEREOF AS WELL AS LED ILLUMINATING DEVICE USING THE SAME PCT专利(日本) JP 5324707
6. 一种红色有机电致发光器件及其制备方法 中国发明专利 ZL 200810050767.X
7. 一种白色有机电致发光器件及其制备方法 中国发明专利 ZL 201410605184.4
8. 双色磷光测温涂料 中国发明专利 ZL 200910241348.9
9. 用高含水料电解制备富镧混合稀土-镁中间合金的方法 中国发明专利 ZL 200910002727.2
10. 含富钇稀土高强耐蚀Mg-Al-Zn-RE挤压镁合金及其生产方法、应用 中国发明专利 ZL 201010120418.8
 

相关话题/长春应用化学研究所