删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

香港中文大学計算機科學與工程學系老师教授导师介绍简介-Sibo WANG

本站小编 免费考研网/2022-01-29

Sibo WANG

     Assistant Professor
     Department of Systems Engineering and Engineering Management
     The Chinese University of Hong Kong

     

Address: Room 507, William M. W. Mong Engineering Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
   Email: 
       Tel:  (852)3943-8310


Biography

I joined the Chinese University of Hong Kong (CUHK) as an Assistant Professor in Dec 2018. I received my B.E. in Software Engineering in 2011 from Fudan University and PhD in Computer Science in 2016 from Nanyang Technological University, Singapore. Before joining CUHK, I spent one and half a year at the University of Queensland, Australia as a research fellow.


Research Interest

Database, data mining and machine learning, especially big data analytics and processing, graph mining and graph representation learning.


Hiring

I am looking for self-motivated research assistants, PhD and postdocs. For interested applicants, please send me a detailed transcript (of the applicant's undergraduate study and postgraduate study if applicable) and a CV that lists the applicant's awards (since high school) and publications.


Research Group

Current students and postdocs:

  • Xingguang Chen (PhD, since Fall 2019)
  • Xingyi Zhang (PhD, since Fall 2019)
  • Qintian Guo (PhD, since Fall 2020)
  • Kun Xie (PhD, since Fall 2020,CUHK Vice-Chancellor's PhD Scholarship)
  • Xin Chen (PhD, since Fall 2020)
  • Xinyu Du (PhD, since Fall 2020)
  • Fangyuan Zhang (PhD, since Fall 2021)

Teaching

  • FTEC4005: Financial Informatics (undergraduate, 2021 Fall@CUHK)
  • FTEC4003: Data Mining for FinTech (undergraduate, 2019 Fall@CUHK, 2020 Fall@CUHK)
  • CSCI2100C: Data Structures (undergraduate, 2019 Spring@CUHK, 2020 Spring@CUHK, 2021 Spring@CUHK)
  • INFS4203/7203: Data Mining (undergraduate and master, 2017 Fall@ University of Queensland)

Selected Publications (A self-maintained full list. My Google Scholar / DBLP entry)

  1. Xingyi Zhang, Kun Xie, Sibo Wang, Zengfeng Huang. 
    Learning Based Proximity Matrix Factorization for Node Embedding.
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 2243-2253, 2021.
    paper / code
     
  2. Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, Ji-Rong Wen.
    Approximate Graph Propagation.
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1686-1696, 2021.
    paper
     
  3. Xingguang Chen, Sibo Wang.
    Efficient Approximate Algorithms for Empirical Entropy and Mutual Information.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 274-286, 2021.
    paper
     
  4. Guanhao Hou, Xingguang Chen, Sibo Wang, Zhewei Wei
    Massively Parallel Algorithms for Personalized PageRank.
    Proceedings of the VLDB Endowment (PVLDB), 14(9): 1668-1680, 2021.
    paper
     
  5. Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, Zengfeng Huang.
    Personalized PageRank to a Targeted Node, Revisited.
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 657-667, 2020.
    paper
     
  6. Song Bian, Qintian Guo, Sibo Wang, Jeffrey Xu Yu. 
    Efficient Algorithms for Budgeted Influence Maximization on Massive Social Networks.
    Proceedings of the VLDB Endowment (PVLDB), 13(9): 1498-1510, 2020.
    paper
     
  7. Qintian Guo, Sibo Wang, Zhewei Wei, Ming Chen.
    Influence Maximization Revisited: Efficient Reverse Reachable Set Generation with Bound Tightened.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 2167-2181, 2020.
    code / paper / slides
     
  8. Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin, Yin Yang, Nan Tang.
    Efficient Algorithms for Approximate Single-Source Personalized PageRank Queries.
    ACM Transactions on Database Systems (TODS), 44(4): 18:1-18:37, 2019.
    paper
     
  9. Runhui Wang, Sibo Wang, Xiaofang Zhou.
    Parallelizing Approximate Single-Source Personalized PageRank Queries on Shared-Memory.
    International Journal on Very Large Data Bases (VLDBJ), 28(6):923-940, 2019.
    paper
      
  10. Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu, Xiaoyong Du, and Ji-Rong Wen.
    PRSim: Sublinear Time SimRank Computation on Large Power-Law Graphs.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 1042-1059, 2019.
    paper
       
  11. Sibo Wang and Yufei Tao.
    Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 1113-1127, 2018.
    paper slides
     
  12. Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong Wen.
    TopPPR: Top-k Personalized PageRank Queries with Precision Guarantees on Large Graphs.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 441-456, 2018.
    paper
      
  13. Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang.
    FORA: Simple and Effective Approximate Single-Source Personalized PageRank.
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 505-514, 2017.
    slides poster paper code
     
  14. Keke Huang, Sibo Wang, Glenn Bevilacqua, Xiaokui Xiao, and Laks Lakshmanan.
     Revisiting the Stop-and-Stare Algorithms for Influence Maximization.
    Proceedings of the VLDB Endowment (PVLDB), 10(9): 913-924, 2017.
    paper
      
  15. Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 
    HubPPR: Effective Indexing for Approximate Personalized PageRank.
    Proceedings of the VLDB Endowment (PVLDB), 10(3): 205-216, 2016.
    code / technical report
     
  16. Sibo Wang, Xiaokui Xiao, Yin Yang, and Wenqing Lin. 
    Effective Indexing for Approximate Constrained Shortest Path Queries on Large Road Networks.
    Proceedings of the VLDB Endowment (PVLDB), 10(2): 61-72, 2016.
    code / technical report
     
  17. Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou. 
    Efficient Route Planning on Public Transportation Networks: A Labelling Approach.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD),  pages 967-982, 2015.
    slides poster code / technical report
     
  18. Sibo Wang, Xiaokui Xiao, and Chun-Hee Lee.
    Crowd-Based Deduplication: An Adaptive Approach.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 1263-1277, 2015.
    code & labeling results / paper
     
  19. Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao.
    Reachability Queries on Large Dynamic Graphs: A Total Order Approach.
    Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 1323-1334, 2014.
    slides / code
     
  20. Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wenqing Lin.
    Efficient Single-Source Shortest Path and Distance Queries on Large Graphs.
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 998-1006, 2013.
    technical report

Services

I am/was a program committee member for the following conferences/workshops:

  • International Conference on Very Large Data Bases (VLDB): 2020, 2021, 2022;
  • ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD): 2019, 2020, 2021;
  • The Web Conference (WWW): 2020;
  • International Conference on Data Engineering (ICDE): 2021;
  • International Joint Conference on Artificial Intelligence (IJCAI): 2020;
  • AAAI Conference on Artificial Intelligence (AAAI): 2021;
  • ACM International Conference on Information and Knowledge Management (CIKM): 2019, 2021;
  • International Conference on Database Systems for Advanced Applications (DASFAA): 2019, 2021;
  • The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD): 2018- 2021;

I am/was also the invited reviewer for the following journals:

  • ACM Transactions on Database Systems (TODS)
  • International Journal on Very Large Data Bases (VLDBJ)
  • IEEE Transactions on Knowledge and Data Engineering (TKDE),
  • ACM Transactions on Knowledge Discovery from Data (TKDD)
相关话题/香港中文大学