暂无信息
基本信息
姓名:邵海东
系别:机电工程系
职称/职务:岳麓****、硕士生导师、助理教授
学位:工学博士、博士后
出生年月:1990年03月
办公室:院楼409
ResearchGate:https://www.researchgate.net/profile/Haidong_Shao
Google Scholar:https://scholar.google.com/citations?user=eiMMrCcAAAAJ&hl=zh-CN
LTU Postdoctoral Fellow:https://www.ltu.se/staff/h/haisha-1.190022?l=en
Email:hdshao@hnu.edu.cn(湖南大学)、hdshao@mail.nwpu.edu.cn(西北工业大学)、haidong.shao@ltu.se(吕勒奥理工大学)
助理教授,硕士生导师,博士生副导师,湖南大学岳麓****,湖南省自然科学基金“优秀青年基金”获得者,全国宝钢优秀学生“特等奖”获得者,英国皇家物理学会2018年度高被引作者奖获得者,入选全球前2%顶尖科学家榜单(World's Top 2% Scientists 2020),西北工业大学博士,瑞典吕勒奥理工大学博士后,研究方向为机电液装备的健康管理与智能运维,主持国家自然科学基金青年项目,国家重点研发计划子课题,湖南省自然科学基金优秀青年基金项目,湖南省自然科学基金青年项目和上海市空间导航与定位技术重点实验室开放课题等,参与了重大研究计划、面上项目、军委装备预研基金、航空科学基金等课题。曾连续3年获博士生“国家奖学金”等荣誉。
目前以唯一第一作者/唯一通讯作者在Information Fusion、IEEE TIE、IEEE TII、IEEE-ASME TMECH、MSSP、KBS、Science China、机械工程学报、航空学报等期刊上发表论文30余篇(27篇非开源SCI):包括IF大于10的3篇,IF大于8的10篇,ESI热点1篇,ESI高被引11篇,《机械工程学报》2019年度Top 10高被引1篇,论文被引总次数达2300+(Google Scholar),单篇最高被引次数300+,H-index为19;中科院一区Top 18篇,JCR Q1 25篇;授权专利4项。
担任SCI期刊《Measurement Science and Technology》和《Electronics》的Guest Editor、《International Journal of Hydromechatronics》青年编委、湖南省高新技术产业科技创新引领计划项目评审专家、中国机械工程学会高级会员、中国振动工程学会会员、EI国际会议IEEE ICCSE 2021的Program Chair、CMVIT 2021和ICFPMCE 2021的Program Committee、CIMIA 2021的Organizing Committee、ICMACS 2021的TechnicalCommittee、ICCAIS 2021的Editor、IEEE Global Rel&PHM-2021和ICSMD 2021的Session Organizer、IEEE Global Rel&PHM-2020和ICSMD 2020的Session Chair。
教育背景
2006年09月-2009年06月,浙江省镇海中学,高中
2009年09月-2013年07月,西北工业大学,航空学院,电气工程及其自动化,工学学士
2013年09月-2015年07月,西北工业大学,航空学院,载运工具运用工程,工学硕士,导师:姜洪开 教授
2015年09月-2018年12月,西北工业大学,航空学院,载运工具运用工程,工学博士,导师:姜洪开 教授
工作履历
2019年01月-至今,湖南大学,机械与运载工程学院,助理教授,岳麓****
2019年06月-至今,湖南大学,机械与运载工程学院,硕士生导师
2019年09月-2021年06月,瑞典吕勒奥理工大学,运维工程系,博士后研究员(Postdoctoral Fellow, Lule? University of Technology, Sweden). 合作教授:Janet (Jing) Lin, Uday Kumar(瑞典皇家工程科学院院士), Diego Galar(西班牙Tecnalia研究院首席专家)
学术兼职
Guest Editor
Special Issue on “Neural Networks in Measurement” in Measurement Science and Technology (SCI JCR Q2)
https://iopscience.iop.org/journal/0957-0233/page/Special_Issue_Neural_Networks_Measurement
Special Issue on “Smart Sensing, Monitoring, and Control in Industry 4.0” in Electronics(SCI JCR Q2)
https://www.mdpi.com/journal/electronics/special_issues/SSMC_electronics
Program Chair
The 16th International Conference on Computer Science and Education (IEEE ICCSE 2021) http://www.ieee-iccse.org/About/committee.html?_v=**95
Program Committee、Organizing Committee、Technical Committee、Session Chair、Editorial Team
The 5th International Conference on Machine Vision and Information Technology (CMVIT 2021) https://www.cmvit.org/com.html
The 2021 International Conference on Intelligent Manufacturing and Industrial Automation (CIMIA 2021)http://www.cimiaconf.com/
The 2021 International Conference on Mathematics, Algorithm and Computer Simulation (ICMACS 2021)https://www.macsconf.org/commit
The 2021 International Conference on Computer Application and Information Security(ICCAIS 2021)https://www.iccaise.com/committee/index
Special Session “PHM for Railway Systems through Collection and Processing of Multi-Source Signals” of the 2021 IEEE Global Reliability and Prognostics & Health Management Conference (IEEE GlobalRel&PHM-2021Nanjing)https://phm21.techconf.org/track/special_sessions
Special Session “PHM for Transportation” of the 2020 IEEE Global Reliability and Prognostics & Health Management Conference (IEEE GlobalRel&PHM-2020 Shanghai)https://phm20.techconf.org/
Special Session “Intelligent Sensing and Data Analytics for Smart Manufacturing” of the 2020 International Conference on Sensing, Measurement and Data Analytics (ICSMD2020) http://icsmd2020.icrp.xjtu.edu.cn/
Reviewer
IEEE Transactions on Industrial Electronics、IEEE Transactions on Industrial Informatics、IEEE Transactions on Cybernetics、IEEE Transactions on Systems, Man, and Cybernetics: Systems、IEEE Transactions on Intelligent Transportation Systems、IEEE/ASME Transactions on Mechatronics、IEEE Computational Intelligence Magazine、IEEE Transactions on Knowledge and Data Engineering、Applied Energy、Mechanical Systems and Signal Processing、Expert Systems with Application、Knowledge-Based Systems、IEEE Transactions on Vehicular Technology、Applied Soft Computing、ISA Transactions、Journal of Manufacturing Systems、Structural Health Monitoring、Computers in Industry、International Journal of Electrical Power and Energy Systems、Neurocomputing、IEEE Transactions on Instrumentation and Measurement、IEEE/CAA Journal of Automatica Sinica、Measurement、IEEE Sensors Journal、International Journal of Production Research、Journal of Process Control、Soft Computing、Measurement Science and Technology、Frontiers of Mechanical Engineering、Part C: Journal of Mechanical Engineering Science、International Journal of Automation and Computing、振动与冲击等
研究领域
研究方向:深度学习与信号处理,数据挖掘与信息融合,故障诊断与寿命预测,健康管理与智能运维
研究对象:大型机电液装备(航空发动机,直升机传动系统,列车牵引系统,风力发电机组等)
欢迎自动化、机械工程、电气工程、动力工程、计算机科学等相关专业背景的学生交流报考。
每年招收硕士研究生不超过5名:学术型1名,专业型1-4名。要求对Matlab或Python语言较熟悉,或对多体动力学建模较熟悉。
科研项目
主持科研项目
[1]主持国家自然科学基金青年科学基金项目:基于深度生成对抗网络的直升机动力传动系统智能健康预示研究,**,27万,2020年01月至2022年12月
[2]主持国家重点研发计划“智能互联装备网络协同制造/运维集成技术与平台研发”(项目编号2020YFB**)课题三“成套装备的多阶段在线协同运维技术”(课题编号2020YFB**)子课题“跨域数据作用的成套装备运行工况多阶段在线评估方法”,80.4万,2020年11月至2023年10月
[3]主持湖南省自然科学基金优秀青年科学基金项目:多域知识协同迁移的直升机传动系统跨域故障诊断和健康评估,2021JJYXQN0057,20万,2021年01月至2023年12月
[4]主持湖南省自然科学基金青年科学基金项目:多源参数驱动下航空发动机早期故障的集成深度迁移诊断方法研究,2020JJ5072,5万,2020年01月至2021年12月
[5]主持湖南大学优秀青年骨干教师支持计划项目,数值模拟和迁移学习联合驱动的直升机传动系统故障跨域诊断研究,25万,2021年01月-2022年12月
[6]主持中央高校基本科研业务费项目:基于深度学习和多源信息融合的机械故障智能诊断,5,25万,2019年01月至2022年12月
[7]主持中国科学院上海天文台上海市空间导航与定位技术重点实验室开放课题,北斗导航星座自主运行时间基准建立与维持,202105,2021年05月-2022年04月
[8]主持西北工业大学博士论文创新基金重点项目:深度学习理论在飞行器故障预示中的应用研究,CX201710,2017年01月至2018年12月
参与科研项目
[01]参与国家自然科学基金重大研究计划培育项目:航空发动机健康状态多源深度信息融合与智能预示研究
[02]参与国家自然科学基金面上项目:临近空间飞行器服役性能退化机理与健康自主感知方法研究
[03]参与国家自然科学基金面上项目:基于深度学习的飞行器故障不确定性评估与预测研究
[04]参与军委装备发展部预研基金项目:XXXX特征提取与定量诊断技术
[05]参与航空科学基金项目:航空发动机XXXX早期故障诊断技术研究
[06]参与航空科学基金项目:基于机器学习的XXXX振动环境预计方法研究
[07]参与上海民用飞机健康监控工程技术研究中心开放课题基金:民用飞机飞控系统状态监控及故障诊断技术研究
[08]参与中航工业西安航空计算技术研究所(631所)项目:XXXX PHM软件验证设备
[09]参与中国航天西安空间无线电技术研究所(504所)项目:XXXX监测平台研制
[10]参与青岛装配式建筑相关关键技术开发与集成应用重大专项
学术成果
ESI热点论文
[1] Shao Haidong, Jiang Hongkai*, Zhang Haizhou, Duan Wenjing, Liang Tianchen, Wu Shuaipeng. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (ESI热点, 入选2019年5月期)
ESI高被引论文
[01] Shao Haidong, Jiang Hongkai*, Zhang Haizhou, Liang Tianchen. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (ESI高被引,2019年1月期至今)
[02] Shao Haidong, Jiang Hongkai*, Zhao Huiwei, Wang Fuan. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (ESI高被引,2018年11月期至今)
[03] Shao Haidong, Jiang Hongkai*, Wang Fuan, Zhao Huiwei. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119: 200-220. (ESI高被引,2018年11月期至今)
[04] Shao Haidong, Jiang Hongkai*, Zhang Haizhou, Duan Wenjing, Liang Tianchen, Wu Shuaipeng. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (ESI高被引,2019年3月期至今)
[05] Shao Haidong, Jiang Hongkai*, Lin Ying, Li Xingqiu. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (ESI高被引,2019年5月期至今)
[06] Shao Haidong, Jiang Hongkai*, Li Xingqiu, Wu Shuaipeng. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[J]. Knowledge-Based Systems, 2018, 140: 1-14. (ESI高被引,2020年7月期至今)
[07] Shao Haidong, Jiang Hongkai*, Wang Fuan, Wang Yanan. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. ISA Transactions, 2017, 69: 187-201. (ESI高被引,2020年9月期至2021年5月期)
[08] Shao Haidong, Jiang Hongkai*, Zhang Xun, Niu Maogui. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002. (ESI高被引,2020年5月期至今)
[09] Shao Haidong*, Cheng Junsheng, Jiang Hongkai, Yang Yu, Wu Zhaotao. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J]. Knowledge-Based Systems, 2020, 188, 105022. (ESI高被引,2021年1月期至今)
[10] He Zhiyi,Shao Haidong*, Wang Ping, Lin Jing, Cheng Junsheng, Yang Yu. Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples[J]. Knowledge-Based Systems, 2020, 191, 105313.(ESI高被引,2021年5月期至今,指导学生第一,本人唯一通讯)
[11] He Zhiyi, Shao Haidong*, Lin Jing, Cheng Junsheng, Yang Yu. Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder[J]. Measurement, 2020, 152, 107393. (ESI高被引,2021年1月期至今,指导学生第一,本人唯一通讯)
IOP Publishing高被引论文
[1] Shao Haidong, Jiang Hongkai*, Zhang Xun, Niu Maogui. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002.
《机械工程学报》2019年度高被引论文Top10
[1] 姜洪开*,邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7), 27-34.(https://mp.weixin.qq.com/s/DnISWAzjT4tk6a-rzNsb3g)
期刊论文
入职后论文(*为通讯作者)
[01]Shao Haidong, Lin Jing, Zhang Liangwei*, Galar Diego, Kumar Uday. A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance[J]. Information Fusion, 2021, 74: 65-76.(SCI一区,Top,IF=12.975)
[02] Shao Haidong, Xia Min, Han Guangjie*, Zhang Yu, Wan Jiafu. Intelligent Fault Diagnosis of Rotor-bearing System under Varying Working Conditions with Modified Transfer Convolutional Neural Networkand Thermal Images[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3488-3496. (SCI一区,Top,IF=10.215)
[03] He Zhiyi, Shao Haidong*, Ding Ziyang, Jiang Hongkai, Cheng Junsheng. Modified deep auto-encoder driven by multi-source parameters for fault transfer prognosis of aero-engine[J]. IEEE Transactions on Industrial Electronics, 2021, Accepted: DOI 10.1109/TIE.2021.**. (SCI一区, Top,IF=8.236,指导学生第一,本人唯一通讯)
[04] Shao Haidong, Xia Min*,Wan Jiafu, Clarence W. de Silva. Modified Stacked Auto-encoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery[J]. IEEE/ASME Transactions on Mechatronics, 2021, Accepted: DOI 10.1109/TMECH.2021.**. (SCI一区,Top,IF=5.303)
[05] Xia Min, Shao Haidong*, Clarence W. de Silva. A Stacked GRU-RNN-based Approach for Predicting Renewable Energy and Electricity Load for Smart Grid Operation[J]. IEEE Transactions on Industrial Informatics, 2021, Accepted: DOI 10.1109/TII.2021.**. (SCI一区,Top, IF=10.215,和英国兰卡斯特大学合作论文,本人唯一通讯)
[06] Shao Haidong*, Cheng Junsheng, Jiang Hongkai, Yang Yu, Wu Zhaotao. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing[J]. Knowledge-Based Systems, 2020, 188, 105022. (SCI一区,Top,IF=8.038)
[07] Shao Haidong*, Ding Ziyang, Cheng Junsheng, Jiang Hongkai. Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO[J]. ISA Transactions, 2020, 105, 308-319. (SCI一区,Top,IF=5.468)
[08] He Zhiyi, Shao Haidong*, Wang Ping, Lin Jing, Cheng Junsheng, Yang Yu. Deep transfer multi-wavelet auto-encoder for intelligent fault diagnosis of gearbox with few target training samples[J]. Knowledge-Based Systems, 2020, 191, 105313. (SCI一区,Top,IF=8.038,指导学生第一,本人唯一通讯)
[09] He Zhiyi, Shao Haidong*, Zhong Xiang, Zhao Xianzhu. Ensemble transfer CNNs driven by multi-channel signals for fault diagnosis of rotating machinery cross working conditions[J]. Knowledge-Based Systems, 2020, 207, 106396. (SCI一区,Top,IF=8.038,指导学生第一,本人唯一通讯)
[10] He Zhiyi, Shao Haidong*, Zhong Xiang, Yang Yu, Cheng Junsheng. An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE[J]. Advanced Engineering Informatics, 2020, 46, 101150. (SCI一区,Top,IF=5.603,指导学生第一,本人唯一通讯)
[11] Ding Ziyang, Shao Haidong*, Xiang Jiawei. Ensemble deep transfer learning driven by multi-sensor signals for fault diagnosis of bevel gear cross operation conditions[J]. Science Chnia-Technological Sciences, 2020, 63. (中国科学:技术科学,SCI二区,IF=3.572,2020年中国最具国际影响力学术期刊,指导学生第一,本人唯一通讯)
[12] Li Xin, Shao Haidong*, Jiang Hongkai, Xiang Jiawei. Modified Gaussian convolutional deep belief network and infrared thermal imaging for intelligent fault diagnosis of rotorbearing system under time-varying speeds[J]. Structural Health Monitoring, 2021, Accepted: DOI 10.1177/**98957. (SCI二区, IF= 5.929,指导学生第一,本人唯一通讯)
[13] He Zhiyi,Shao Haidong*, Lin Jing, Cheng Junsheng, Yang Yu. Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder[J]. Measurement, 2020, 152, 107393. (SCI二区, IF= 3.927,指导学生第一,本人唯一通讯)
[14] He Zhiyi, Shao Haidong*, Cheng Junsheng, Yang Yu, Xiang Jiawei. Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals[J]. Measurement, 2020, 163, 107965. (SCI二区, IF= 3.927,指导学生第一,本人唯一通讯)
[15] Li Xin, Yang Yu, Shao Haidong*, Zhong Xiang, Chen Jian, Cheng Junsheng. Symplectic weighted sparse support matrix machine for gear fault diagnosis[J]. Measurement, 2021, 168 108392. (SCI二区, IF= 3.927,指导学生第一,本人唯一通讯)
[16] Shao Haidong, Lin Jing*, Zhang Liangwei, et al. Compound fault diagnosis for a rolling bearing using adaptive DTCWPT with higher order spectra[J]. Quality Engineering, 2020, 1-12. (SCI四区, IF=2.128)
[17] He Zhiyi, Shao Haidong*, Zhang Xiaoyang, Cheng Junsheng, Yang Yu. Improved Deep Transfer Auto-encoder for Fault Diagnosis of Gearbox under Variable Working Conditions With Small Training Samples[J]. IEEE Access, 2019, 7: 115368-115377. (SCI三区, IF=3.367,指导学生第一,本人唯一通讯)
[18] 邵海东*, 张笑阳, 程军圣, 杨宇. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9), 84-90. (EI,2020年第9期最受关注论文,机械工程领域T1级期刊)
[19] 何知义, 邵海东*, 程军圣, 杨宇. 基于弹性核凸包张量机的机械设备热成像故障诊断方法[J]. 中国机械工程, 2021, 32(12),1456-1461. (EI,机械工程领域T2级期刊, 指导学生第一,本人唯一通讯)
[20] 韩淞宇, 邵海东*, 姜洪开, 张笑阳. 基于提升卷积神经网络的航空发动机高速轴承智能故障诊断[J].航空学报, 2021, Accepted, DOI:10.7527/S1000-6893.2021.25479. (EI,航空航天领域中文核心期刊排名第1, 指导学生第一,本人唯一通讯)
[21] Shao Haidong*, Li Wei. Comparison Research of Feature Fusion Methods in Characterizing Performance Degradation of Aero-engine[C]. IEEE Global Reliability and Prognostics & Health Management Conference (PHM-2020 Shanghai), Shanghai, China, 2020: 1-6. (EI国际会议)
入职前论文(*为通讯作者)
[01] Shao Haidong, Jiang Hongkai*, Zhang Haizhou, Liang Tianchen. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. (SCI一区,Top, IF=8.236)
[02] Shao Haidong, Jiang Hongkai*, Zhao Huiwei, Wang Fuan. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. (SCI一区,Top,IF=6.823)
[03] Shao Haidong, Jiang Hongkai*, Zhang Haizhou, Duan Wenjing, Liang Tianchen, Wu Shuaipeng. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. (SCI一区,Top,IF=6.823)
[04] Shao Haidong, Jiang Hongkai*, Lin Ying, Li Xingqiu. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders[J]. Mechanical Systems and Signal Processing, 2018, 102: 278-297. (SCI一区,Top,IF=6.823)
[05] Shao Haidong, Jiang Hongkai*, Zhao Ke, Wei Dongdong, Li Xingqiu. A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings[J]. Mechanical Systems and Signal Processing, 2018, 110: 193-209. (SCI一区,Top,IF=6.823)
[06] Shao Haidong, Jiang Hongkai*, Wang Fuan, Zhao Huiwei. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119: 200-220. (SCI一区,Top,IF=8.038)
[07] Shao Haidong, Jiang Hongkai*, Li Xingqiu, Wu Shuaipeng. Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine[J]. Knowledge-Based Systems, 2018, 140: 1-14. (SCI一区,Top,IF=8.038)
[08] Shao Haidong, Jiang Hongkai*, Wang Fuan, Wang Yanan. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. ISA Transactions, 2017, 69: 187-201. (SCI一区,Top,IF=5.468)
[09] Shao Haidong, Jiang Hongkai*, Li Xingqiu, Liang Tianchen. Rolling bearing fault detection using continuous deep belief network with locally linear embedding[J]. Computers in Industry, 2018, 96: 27-39. (SCI二区, IF=7.635)
[10] Shao Haidong, Jiang Hongkai*, Zhang Xun, Niu Maogui. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26: 115002. (SCI三区, IF=2.046)
[11] Jiang Hongkai*, Shao Haidong, Chen Xinxia, Huang Jiayang. A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(6): 3513-3521. (SCI四区, IF=1.851)
[12] 姜洪开*, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7), 27-34.(EI,2019年第7期最受关注论文,2019年度高被引论文Top10,机械工程领域T1级期刊)
[13] Shao Haidong*, Jiang Hongkai. Unsupervised feature learning of gearbox fault using stacked wavelet auto-encoder[C]. The 9th Annual IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, USA, 2018: 1-8. (EI国际会议)
[14] Shao Haidong*, Jiang Hongkai. Research on semi-active suspension vibration control using magneto-rheological damper[C]. Proceedings of the First Symposium on Aviation Maintenance and Management-Volume Ⅱ. Springer Berlin Heidelberg, Xi'an, China, 2014: 441-447. (EI国际会议)
[15] Shao Haidong*, Jiang Hongkai, Zhao Huiwei, et al. Aircraft electromechanical system fault diagnosis based on deep learning[C]. The 29th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM), Xi'an, China, 2016: 1-6. (EI国际会议)
[16] Jiang Hongkai*, Shao Haidong, Chen Xinxia, Huang Jiayang. Aircraft fault diagnosis based on deep belief network[C]. The International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 2017: 123-127. (EI国际会议)
其他论文(合作作者)
[01] He Zhiyi, Shao Haidong, Cheng Junsheng, Zhao Xianzhu, Yang Yu. Support tensor machine with dynamic penalty factors and its application to the fault diagnosis of rotating machinery with unbalanced data[J]. Mechanical Systems and Signal Processing, 2020, 141, 106441.
[02]Zhao Ke, Shao Haidong. Intelligent Fault Diagnosis of Rolling Bearing Using Adaptive Deep Gated Recurrent Unit[J]. Neural Processing Letters, 2020, 51, 1165-1184.
[03]Wei Dongdong, Jiang Hongkai, Shao Haidong, Li Xingqiu, Lin Ying. An optimal variational mode decomposition for rolling bearing fault feature extraction[J]. Measurement Science and Technology, 2019, 30: 055004.
[04] Jiang Hongkai, Li Xingqiu, Shao Haidong, Zhao Ke. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network[J]. Measurement Science and Technology, 2018, 29: 065107.
[05]Wang Fuan, Jiang Hongkai, Shao Haidong, Duan Wenjing, Wu Shuaipeng. An adaptive deep convolutional neural network for rolling bearing fault diagnosis[J]. Measurement Science and Technology 28 (2017) 095005.
[06] Li Xingqiu, Jiang Hongkai, Xiong Xiong, Shao Haidong. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network[J]. Mechanism and Machine Theory 133 (2019) 229-249.
[07] Zhao Xianzhu, Cheng Junsheng, Wang Ping, He Zhiyi, Shao Haidong, Yang Yu. A novelty detection scheme for rolling bearing based on multiscale fuzzy distribution entropy and hybrid kernel convex hull approximation[J]. Measurement 156 (2020) 107589.
[08] Zhuo Long, Xiaofei Zhang, Li Zhang, Guojun Qin, Shoudao Huang, Dianyi Song, Haidong Shao, Gongping Wu. Motor Fault Diagnosis Using Attention Mechanism and Improved AdaBoost Driven by Multi-sensor Information[J]. Measurement 170 (2021) 108718.
[09] Zhuo Long, Xiaofei Zhang, Min He, Shoudao Huang, Guojun Qin, Dianyi Song, Yao Tang, Gongping Wu, Weizhi Liang, Haidong Shao. Motor Fault Diagnosis Based on Scale Invariant Image Features[J]. IEEE Transactions on Industrial Informatics, 2021, Accepted: DOI 10.1109/TII.2021.**.
[10] Liangwei Zhang, Jing Lin, Haidong Shao, Zhicong Zhang, Xiaohui Yan, Jianyu Long. End-To-End Unsupervised Fault Detection Using A Flow-Based Model[J]. Reliability Engineering & System Safety, 2021, Accepted.
授权专利
[1] 姜洪开, 邵海东, 张雪莉, 王福安. 一种基于连续深度置信网络的滚动轴承故障预测方法. 国家发明专利, 申请号: ZL 0.9, 授权公告号: CN B, 授权公告日: 2018年5月29日.
奖励与荣誉
教学育人情况
[01] 获湖南大学2019年新聘教师微格教学比赛校三等奖;
[02] 获湖南大学2020年“创新创业优秀指导教师”;
[03] 唯一指导老师指导本科生获2021年机械与运载工程学院毕业设计大赛铜奖,湖南大学本科优秀创新毕业论文二等奖;
[04] 唯一指导老师指导本科生立项2020年大学生创新训练(SIT)项目1项,等级:国家级;
[05] 唯一指导老师指导本科生立项2021年大学生创新训练(SIT)项目1项,等级:省级;
[06] 第一指导老师指导本科生获2020年第十三届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛“机械类单项赛国家二等奖”4项;
[07] 第一指导老师指导本科生获2020年第十三届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛“机械类单项赛国家三等奖”4项;
[08] 共同指导老师指导本科生获2020年第十三届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛“机械类团体赛国家三等奖”1项;
[09] 获2020年第十三届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛“机械类指导教师国家三等奖”1项;
[10] 第一指导老师指导本科生获2020年“挑战杯”大学生创业计划竞赛湖南大学校赛铜奖;
[11] 讲授本科生课程《机电传动与控制》(32学时),研究生课程《深度学习理论与应用》(48学时+32学时);
[12] 任机械与载运工程学院1906班的班主任;
[13] 任机械与载运工程学院智能制造班2名本科生的班导师;
[14] 任2名博士生的副导师;
个人主要荣誉
国际级
[1] 2020年,Certificate of Competency in Deep Learning for Computer Vision(NVIDIA Deep Learning Institute)
[2] 2018年,Top Cited Author Award 2018(英国物理学会出版社IOP Publishing)
国家级
[1] 2020年,第十三届“高教杯”全国大学生先进成图技术与产品信息建模创新大赛机械类指导教师国家三等奖;
[2] 2018年,全国宝钢“优秀学生特等奖”(全国宝钢教育基金会,全国25人,相关报道:https://news.nwpu.edu.cn/info/1002/60025.htm)
[3] 2018年,博士研究生“国家奖学金”(中华人民共和国教育部)
[4] 2017年,博士研究生“国家奖学金”(中华人民共和国教育部)
[5] 2016年,博士研究生“国家奖学金”(中华人民共和国教育部)
[6] 2011年,本科生“国家奖学金”(中华人民共和国教育部)
校级、省级
[01] 2020年,校级创新创业优秀指导教师(湖南大学)
[02] 2020年,年度优秀教职工(湖南大学)
[03] 2019年,新聘教师微格教学比赛校三等奖(湖南大学)
[04] 2019年,校研究生“优秀毕业生”(西北工业大学)
[05] 2018年,校“优秀研究生标兵”(西北工业大学)
[06] 2018年,校优秀研究生“学术之星”(西北工业大学)
[07] 2017年,校优秀研究生“学术之星”(西北工业大学)
[08] 2013年,本科生优秀毕业生(西北工业大学)
[09] 2013年,本科生优秀毕业论文(西北工业大学)
[10] 2010年,陕西省第八次大学生高等数学竞赛一等奖(陕西省大学数学教学委员会)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
湖南大学机械与运载工程学院导师教师师资介绍简介-邵海东
本站小编 Free考研考试/2021-08-18
相关话题/工程学院 机械
湖南大学机械与运载工程学院导师教师师资介绍简介-陈静
暂无信息基本信息姓名:陈静系别:机电工程系职称/职务:助理教授办公电话:暂无移动电话:暂无E-mail:chenwang402@163.com教育背景工作履历1996.7-2005.11广西大学机械工程学院教师2005.11-至今湖南大学机械与运载工程学院教师研究领域学科专业领域:机械电子工程主要研 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-周云山
暂无信息基本信息姓名:周云山系别:机电工程系职称/职务:教授、博士生导师办公电话:123移动电话:123E-mail:zys_8888@sina.com教育背景主要学习工作经历1978.091982.01吉林工业大学车辆工程1982.011984.12吉林工业大学车辆工程1987.021990.03 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-陈宁
暂无信息基本信息姓名:陈宁系别:机电工程系职务:副教授、硕士生导师邮箱:chenning@hnu.edu.cn教育背景密西根大学安娜堡分校联合培养博士(机械工程)2015.11至2017.06湖南大学博士(机械工程)2011.09至2017.06湖南大学学士(车辆工程)2007.09至2011.06 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-钟翔
暂无信息基本信息姓名:钟翔系别:机电系职称:助理教授办公电话:**移动电话:**E-mail:zx5587@hnu.edu.com传真:**教育背景1989年就读于湖南大学电气工程系工业自动化专业本科2004年就读于湖南大学软件学院软件工程专业硕士研究生2015年就读于重庆大学软件学院软件工程专业博 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-周华安
暂无信息基本信息姓名:周华安系别:教学实验中心职称/职务:副教授办公电话:暂无移动电话:暂无E-mail:暂无 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-彭晓燕
暂无信息基本信息姓名:彭晓燕系别:机电工程系职称/职务:教授、硕士生导师办公电话:1移动电话:1E-mail:1教育背景1986年获机械工程学士学位;1989年获机械电子工程硕士学位;2013年获控制理论与控制工程专业博士学位。2005年在加拿大进行计算机控制方面的合作研究。工作履历1986年获机械 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-黄晶
暂无信息基本信息姓名:黄晶系别:机电工程系职称/职务:副教授、硕士生导师办公电话:移动电话:E-mail:huangjing926@hnu.edu.cn教育背景1999年-2003年湖南大学机械设计制造及其自动化本科2003年-2006年湖南大学机械电子工程硕士2006年-2009年湖南大学车辆工程 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-谭勇
暂无信息基本信息姓名:谭勇系别:教学实验中心职称/职务:助理研究员办公电话:暂无移动电话:暂无E-mail:暂无 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-程军圣
机械制造及其自动化专业博士,力学博士后。“CurrentDevelopmentinTheoryandApplicationsofWavelets”、“JournalofMeasurementScienceandInstrumentation”、“振动与冲击”、“振动、测试与诊断”等期刊编委,湖南省故 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18湖南大学机械与运载工程学院导师教师师资介绍简介-颜运昌
暂无信息基本信息性别:男出生年月:1963.05职称:副教授工作单位:湖南大学机械与汽车工程学院电子信息科学与技术系教育背景1979.9-1983.6华南理工大学本科获学士学位1983.9-1986.6北京工业大学硕士研究生获硕士学位工作履历1992.9-现在湖南大学机械与汽车工程学院副教授1993 ...湖南大学师资导师 本站小编 Free考研考试 2021-08-18
