导师简介
姓名 | 陈卫华 | 性别 | 女 | 出生年月 | 1982.01 | ||
职称 | 教授 | 民族 | 汉 | 籍 贯 | 河南省新乡市 | ||
电子邮箱 | chenweih@zzu.edu.cn | 最终学位 | 博士 | ||||
学术头衔/兼职 | 1、《Frontiers in chemistry》期刊客座副主编(二区,IF=3.782) 2、中国化工学会第二届储能工程专业委员会委员 3、中国功能仪表材料学会储能与动力电池及其材料专业委员会委员 4、中国化学会会员 | ||||||
研究方向 | 物理化学-电化学(锂/钠离子电池、超级电容器、镍氢电池等) | ||||||
主要学习、科研和工作经历 | 2019.04-至今, 郑州大学化学学院,教授 2013.03-2019.03,郑州大学化学学院,副教授 2010.01-2013.02,郑州大学化学学院,讲师 2004.09-2009.12,武汉大学化学与分子科学学院,硕博 2000.09-2004.06,郑州大学化学系 基地班,本科 | ||||||
代表性 教学成果与荣誉 | 1 第十五届“挑战杯”全国大学生课外学术科技作品竞赛三等奖,指导教师;国家级;2017 2 十三届“挑战杯”河南省大学生课外学术科技作品竞赛优秀指导教师奖;省级;2017 3 优秀班主任;校级;2019 4 郑州大学“青年五四奖章”;2019 | ||||||
代表性 科研成果 | 一、 科研项目 1 (2019.12-2021.12) 2019年度河南省高层次人才特殊支持“中原千人计划”—“中原青年拔尖人才” 河南省科技厅,组织部,科协;主持人 2 (2018.01-2021.12) 过渡金属氧族化合物异质结/开口掺杂石墨烯多级结构组装高性能钠离子电池及其电化学过程中结构演变 国家自然科学基金-面上项目;主持人 3 (2019.01-2021.12) 金属硫族化合物储钠过程中的界面演变及其精准调控 国家自然科学基金;主持人 4 (2012.02-2014.12) 新型核壳结构调控锂离子电池活性材料电化学性能研究 国家自然科学基金-青年基金;主持人 5 (2015.01-2015.12) 动力电池用高容量硅酸亚铁锂基复合材料的设计合成与电化学性能研究 国家自然科学基金-应急管理项目;主持人 6 (2015.01-2017.12) 新型钠离子电池电极材料的设计合成与性能调控 河南省高校科技创新人才支持计划;主持人 7 (2019.09-2020.08) 郑州大学青年创新专项-子课题 郑州大学青年创新专项-子课题;主持人 8 (2013.11-2018.10) 盐(NaCl)深加工系列工业品 横向;主持人 9 (2014.09-2017.08) 新型水系锂离子电池及其关键材料的基础研究 郑州大学优秀青年教师专项科研基金;主持人 10 (2014.01-2017.12) 新型金属有机骨架配合物-石墨烯超分子结构体系的设计合成及其电化学电容性能研究 国家自然科学基金-面上项目;参与-3 二、论文(部分) 2020年 1. Bimetal synergistic effect induced high reversibility of conversion type Ni@NiCo2S4 as a free-standing anode for sodium ion batteries. J. Zhang, K. Song, L. Mi, C. Liu, X. Feng, J. Zhang, W. Chen* and C. Shen. J. Phys. Chem. Lett. 2020, 11, 1435-1442.DOI:10.1021/acs.jpclett.9b03336 2. Simple synthesis of sandwich-like SnSe2 /rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. T. Wang, K. Yang, J. Shi, S. Zhou, L. Mi, H. Li, * W. Chen*. J. Energy Chem., 2020, 46, 71-77. DOI: 10.1016/j.jechem.2019.10.021 3. Se-C bond and reversible SEI in facile synthesized SnSe2-3D carbon induced stable anode for sodium-ion batteries. K.Yang, X. Zhang, K. Song, J. Zhang, C. Liu, L. Mi, Y. Wang, W. Chen*. Electrochimica Acta 337 (2020) 135783. DOI: 10.1016/j.electacta.2020.135783 2019年 4. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries. W. Chen,* X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao,* C. Shen. Adv. Mater. 2019, 31, **. DOI: 10.1002/adma.**4. 5. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. M. Z. Chen, W. B. Hua, J. Xiao, D. Cortie, W. Chen,* E. H Wang, Z. Hu, Q. F Gu, X. L Wang, S. Indris, S. L. Chou* & S. X Dou. Nat. Commun. 2019, 10, 1480. DOI: 10.1038/s41467-019-09170-5. 6. Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. S. Qi, L. Mi, K. Song, K. Yang, J. Ma, X. Feng, J. Zhang,* W. Chen*. J. Phys. Chem. C, 2019, 123, 2775-2782. DOI: 10.1021/acs.jpcc.8b11069. 7. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. K. Song, C. Liu, L. Mi, S. Chou, W. Chen* C. Shen, Small, 2019, **. DOI: 10.1002/smll.**4 8. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. D. Yang, W. Chen, * X. Zhang, L. Mi, C. Liu, L. Chen, X. Guan, * Y. Cao, * C. Shen. J. Mater. Chem. A, 2019, 7, 19709. DOI: 10.1039/c9ta05664e 9. α-Ni(OH)2/NiS1.97heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. W. Wei,J. Wu,S. Cui,Y. Zhao, W. Chen*andL.Mi*. Nanoscale, 2019, 11, 6243-6253. DOI:10.1039/C9DT02423A 12. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. M. Chen, E. Wang, Q. Liu, X. Guo, W. Chen,* S. Chou* S. Dou. Energy Storage Mater., 2019, 19, 163. DOI: 10.1016/j.ensm.2019.03.030. 13. Bio-inspired nano-engineering of ultrahigh loading 3D hierarchical Ni@NiCo2S4/Ni3S2 electrode for high energy density supercapacitors. T. Tang, S. Cui, W. Chen, * H.W. Hou, L.Mi*. Nanoscale, 2019, 11, 1728. DOI: 10.1039/C8NR09754B 2018年 14. Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Y. Dong, Y. Ma, D. Li, Y. Liu, W. Chen,* X. Feng, J. Zhang*. Chem. Sci., 2018, 9, 8682. DOI:10.1039/C8SC02868K. 15. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups. W. Chen,* L. Zhang, C. Liu, X. Feng, J. Zhang, L. Guan, L. Mi*, S. Cui. ACS Appl. Mater. Interfaces, 2018, 10, 28, 23883-23890. DOI: 10.1021/acsami.8b06706. 16. Novel safer phosphonate-based gel polymer electrolytes for sodium-ion batteries with excellent cycling performance. J. Zheng,* Y. Zhao, X. Feng, W. Chen,* Y. Zhao. J. Mater. Chem. A, 2018, 6, 6559-6564. DOI: 10.1039/c8ta00530c. 17. Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-ratecathode material for lithium ion batteries. Z. Li, X. Feng*, L. Mi, J. Zheng, X. Chen, W. Chen*. Nano Research, 2018, 11, 4038-4048. DOI: 10.1007/s12274-018-1986-z. 18. Polypropylene/hydrophobic -silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng∗, W. Chen*. J. Power Sources, 2018, 376,177-183. DOI: 10.1016/j.jpowsour.2017.11.086. 19. Carbon Coated Ultrasmall Anatase TiO2 nanocrystal anchored on N, S-RGO as high-performance anode for sodium ion batteries. L. Zhao, T. Tang, W. Chen*, X. Feng, L. Mi*. Green Energy Environ. 2018, 3, 277-285, DOI: 10.1016/j.gee.2018.01.004. 2017年 20. Synergistic effect induced ultrafine SnO2/graphene nanocomposite as advanced lithium/sodium-ion batteries anodes. W. Chen,* K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu*. J. Mater. Chem. A, 2017, 5, 10027-10038. DOI: 10.1039/c7ta01634d. 21. Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium ion batteries. W. Chen*, S. Qi, L. Guan, C. Liu, S. Cui, C. Shen, L. Mi*. J. Mater. Chem. A, 2017, 5, 5332-5341. DOI: 10.1039/c7ta00114b. 22. Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries. W. Chen*, S. Qi, M. Yu, X. Feng, S. Cui, J. Zhang, L. Mi*. Electrochim. Acta 2017, 230, 1-9.DOI: 10.1016/j.electacta.2017.01.176. 23. Constructing hierarchical three-dimensional interspersed flower-like nickel hydroxide for asymmetric supercapacitors. W. Wei, W. Chen*, L. Ding, S. Cui, L. Mi*. Nano Res. 2017, 10, 3726-3742. DOI: 10.1007/s12274-017-1586-3. 24. A novel hollow tubular-in-tubular architecture of carbon tube supported nickel cobalt sulfide nanotube for advanced supercapacitors. N. Wang, Y.Wang, S. Cui, H. Hou, L. Mi*, W. Chen*. ChemNanoMat. 2017, 3, 269-276. DOI: 10.1002/cnma.**6. 2016年 25. From α-NaMnO2 to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi*, W. Chen*. CrystEngComm 2016, 18, 3136-3141. DOI:10.1039/C6CE00191B. 26. Controlled synthesis of concentration gradient LiNi0.84Co0.10Mn0.04Al0.02O1.90F0.10with improved electrochemical properties in Li-ion batteries. W. Chen,* Y. Li, J. Zhao, F. Yang, J. Zhang, Q. Shi, L. Mi*. RSC Adv. 2016, 6, 58173-58181. DOI:10.1039/C6RA03220F. 27. Controlled synthesis of spherical hierarchical LiNi1-x-yCoxAlyO2 (0<x, y<0.2) via a novel cation exchange process as cathode materials for high-performance lithium batteries. W. Chen,* Y. Li, D. Yang, X. Feng, X. Guan, L. Mi*. Electrochim. Acta 2016, 190, 932-938. DOI: 10.1016/j.electacta.2016.01.024. 2015年 28. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. Y. Gao, L. Mi,* W. Wei, S. Cui, Z. Zheng, H. Hou, W. Chen*. ACS Appl. Mater. Interfaces 2015, 7, 4311-4319. DOI: 10.1021/am508747m. 29. How to synthesize pure Li2-xFeSi1-xPxO4/C (x=0.03-0.15) easily from low-cost Fe3+ as cathode materials for li-ion batteries. W. Chen,* D. Zhu, Y. Li, C. Li, X. Feng, X. Guan, C.Yang, J. Zhang,* L. W. Mi*. Dalton Trans. 2015, 44, 14805-14812. DOI:10.1039/C5DT01743B. 2014年 30. Al insertiona induced enhanced performance of Li (Ni0.83-xCo0.10Mn0.07Aly) O2 microspheres for Li-ion batteries design. W. Chen*, J.Zhao, Y. Li, S. Li, C Jin, C. Yang, X. Feng, J. Zhang* and L. Mi*. ChemElectroChem 2014, 1, 601-610. DOI:10.1002/celc.**4. 31. Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. W. Wei, L. Mi*, Y. Gao, Z. Zheng, W. Chen*, X.Guan*. Chem. Mater. 2014, 26, 3418-3426. DOI: 10.1021/cm**. 2013年 32. Synthesis of Li2FeSiO4/C and its excellent performance in aqueous lithium-ion batteries. W. Chen*, M. Lan, D. Zhu, C. Ji, X. Feng, C. Yang, J. Zhang* and L. Mi*. J. Mater. Chem. A , 2013, 1, 10912-10917. DOI: 10.1039/C3TA11861D.
三、科技奖励 1 三维立体结构Cu/Ni基硫族化合物制备及催化、电化学性能研究;河南省科学技术进步奖叁等奖;河南省人民政府,中国;2019;排名:2 2 三维骨架原位构筑高效纺织染料污水降解催化剂的研发及应用;中国纺织工业联合会科学技术奖叁等奖;中国纺织工业联合会,中国;2018;排名:2 3 泡沫金属基底原位构筑高电化学活性/催化性能的三维分等级结构金属硫族化合物;河南省教育厅科技成果奖(壹等奖);河南省教育厅,中国;2017;排名:2 4 镍钴基多元化合物用于高性能超级电容器器件组装设计;河南省教育厅科技成果奖(壹等奖);河南省教育厅,中国;2018;排名:3 四、专利 1.水系可充放锂离子的电极材料及水溶液可充放锂离子电池,专利号:ZL**7143.1 2.合成硅酸盐基锂离子电池材料所用原料Li2SiO3的制备方法,专利号:ZL**2219.7 3.纯相Li2FeSiO4及其碳包覆修饰产物的制备方法,专利号:ZL**0486.5 4.锂二次电池用高容量正极材料及其制备方法,专利号:ZL**4476.9 5.超级电容器用Ni1-x-yCoxMny(OH)2@C材料及其制备方法,专利号:ZL**3974.1 6.一种球形锂离子电池正极材料及其前驱体的制备方法,专利号:ZL**5938.8 7.具有花状结构的二元硫化物Ag2XZn1-XS微粒及其制备方法,专利号:ZL**7297.4 8.具有花状结构的二元硫化物CuXZn1-XS微粒及其制备方法,专利号:ZL**7295.5 9.具有花状结构的二元硫化物PbXZn1-XS微粒及其制备方法,专利号:ZL**7294.0 10.具有花状结构的二元硫化物CdXZn1-XS微粒及其制备方法,专利号:ZL**7296.X 关于新型电极材料、隔膜的制备及应用等研究成果共申请国家发明专利26项、其中已授权发明专利14项。
五、其他 陈卫华教授主要从事面向解决能源和环境问题的水系/有机体系能量存储体系的电极材料和隔膜的设计合成、电解液及界面调控相关研究工作。主要关注钠离子电池金属硫族化合物负极材料的失效机制及性能优化、高安全性电解质/隔膜,以及正极材料的结构调控及其储能机制研究。在国际期刊Adv. Mater.、Nat. Commun.、Chem. Mater.、Small、J. Phys. Chem. L、J. Phys. Chem. C等发表学术论文80余篇,ESI高被引论文3篇,发表的论文共被SCI期刊引用1700余次,H因子为22。研究成果被J. Mater. Chem. A、J. Phys. Chem. L作为外封面文章发表,并为J. Mater. Chem. A杂志的HOT Paper。入选中原千人计划——中原青年拔尖人才、河南省高校科技创新人才。 | ||||||
注:可加页