删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

肝细胞癌患者自噬相关基因的预后作用

本站小编 Free考研考试/2021-12-04

肝细胞癌患者自噬相关基因的预后作用

桂子玮1,李艳1,王昕苑1,韩佳奇2,姚诗琪3,牛晓辰1

(1. 山西医科大学 第二临床医学院,太原 030000;2. 山西医科大学 药学院,太原 030000;3.山西医科大学 第一临床医学院,太原 030000)



摘要:

构建由自噬相关基因组成的预后模型,预测肝细胞癌(HCC)患者的生存预后情况,为其个性化诊疗和临床研究提供依据。利用TCGA数据库中HCC的测序信息与人类自噬数据库联合,筛选差异表达的自噬相关基因,对其进行GO富集与KEGG通路分析;通过单因素与多因素Cox分析筛选与患者生存预后明显相关的风险基因,构建预后风险评分模型;根据模型计算患者风险值并验证模型,利用GEPIA2.0网页工具与HPA数据库对风险基因在HCC中的表达情况以及与生存预后的关系进行验证。结果发现,HCC肿瘤组织相较正常组织共筛选到61个差异表达的自噬相关基因(表达上调57个,下调4个),GO富集与KEGG通路分析显示均与自噬有关;单因素Cox分析共筛选到12个与患者生存预后相关的基因,多因素Cox分析后共有4个基因被纳入预后风险评分模型,分别是SQSTM1、HDAC1、RHEB和ATIC,计算公式为:风险值(risk score)=SQSTM1表达量×0.185+HDAC1表达量×0.382+RHEB表达量×0.423+ATIC表达量×0.438;K-M生存曲线显示高风险组生存率低于低风险组,风险曲线提示4个基因与不良预后密切相关,ROC曲线证明模型具有预测意义;GEPIA2.0网页工具以及HPA数据库表明高表达4个基因均导致患者生存率降低。所构建预后风险评分模型可有效预测HCC患者生存预后情况,并提供个性化诊疗策略。

关键词:  肝细胞癌  自噬  预后模型

DOI:10.12113/202006001

分类号:R735.7

文献标识码:A

基金项目:山西省2019年大学生创新创业训练计划项目(No.2019189).



Prognostic roles of autophagy-associated genes in patients withhepatocellular carcinoma

GUI Ziwei1, LI Yan1, WANG Xinyuan1, HAN Jiaqi2, YAO Shiqi3, NIU Xiaochen1

(1.The Second Clinical College,Shanxi Medical University, Taiyuan 030000, China; 2. College of Pharmacy,Shanxi Medical University, Taiyuan 030000, China; 3.The First Clinical College,Shanxi Medical University, Taiyuan 030000, China)

Abstract:

A prognostic model composed of autophagy-related genes was constructed to predict the survival and prognosis of patients with hepatocellular carcinoma (HCC) and provide basis for individualized diagnosis and clinical research. The sequencing information of HCC in TCGA database and human autophagy database was utilized to screen differentially expressed autophagy-related genes for GO enrichment and KEGG pathway analysis. The risk genes significantly related to survival prognosis were screened through univariate and multivariate Cox analyses to construct prognostic risk score model. The patient risk values were calculated, and the models were verified. GEPIA2.0 web tools and HPA database were emplayed to verify the expression of risk genes in the HCC and the relationship with survival prognosis. Results show that compared with normal tissues, a total of 61 differentially expressed autophagy-related genes (57 up-regulated and 4 down-regulated) were screened from HCC tumor tissues. GO enrichment and KEGG pathway analysis results showed that these genes were autophayg-associated. A total of 12 genes related to survival and prognosis of patients were selected by univariate Cox analysis. After multivariate Cox analysis, four genes (SQSTM1, HDAC1, RHEB. and ATIC) were included in the prognostic risk scoring model. The formula was as follows: risk score=SQSTM1 expression levels×0.185+HDAC1 expression levels×0.382+RHEB expression levels×0.423+ATIC expression levels×0.438. K-M survival curves showed that the survival rate in high risk group was lower than that in low risk group, risk curves suggested that four genes were closely related to poor prognosis, and ROC curves proved that the model had predictive significance. Results obtained from GEPIA2.0 web tool and HPA database showed that the high expression of four genes resulted in reduced survival. The constructed prognostic risk score model can effectively predict the survival and prognosis of patients and provide personalized diagnosis and treatment strategies.

Key words:  Hepatocellular carcinoma  Autophagy  Prognostic model


桂子玮, 李艳, 王昕苑, 韩佳奇, 姚诗琪, 牛晓辰. 肝细胞癌患者自噬相关基因的预后作用[J]. 生物信息学, 2021, 19(3): 170-183. DOI: 10.12113/202006001.
GUI Ziwei, LI Yan, WANG Xinyuan, HAN Jiaqi, YAO Shiqi, NIU Xiaochen. Prognostic roles of autophagy-associated genes in patients with hepatocellular carcinoma[J]. Chinese Journal of Bioinformatics, 2021, 19(3): 170-183. DOI: 10.12113/202006001.
基金项目 山西省2019年大学生创新创业训练计划项目(No.2019189) 通信作者 牛晓辰,男,住院医师,研究方向:脑肿瘤与颅脑外科. E-mail:niu19970423@126.com 作者简介 桂子玮,女,本科生,研究方向:生物信息学与分子病理诊断.E-mail:ziweig_smile@163.com 文章历史 收稿日期: 2020-06-01 修回日期: 2020-07-01


Contents            Abstract            Full text            Figures/Tables            PDF


肝细胞癌患者自噬相关基因的预后作用
桂子玮1, 李艳1, 王昕苑1, 韩佳奇2, 姚诗琪3, 牛晓辰1     
1. 山西医科大学 第二临床医学院,太原 030000;
2. 山西医科大学 药学院,太原 030000;
3. 山西医科大学 第一临床医学院,太原 030000

收稿日期: 2020-06-01; 修回日期: 2020-07-01
基金项目: 山西省2019年大学生创新创业训练计划项目(No.2019189)
作者简介:桂子玮,女,本科生,研究方向:生物信息学与分子病理诊断.E-mail:ziweig_smile@163.com
通信作者: 牛晓辰,男,住院医师,研究方向:脑肿瘤与颅脑外科. E-mail:niu19970423@126.com


摘要: 构建由自噬相关基因组成的预后模型,预测肝细胞癌(HCC)患者的生存预后情况,为其个性化诊疗和临床研究提供依据。利用TCGA数据库中HCC的测序信息与人类自噬数据库联合,筛选差异表达的自噬相关基因,对其进行GO富集与KEGG通路分析;通过单因素与多因素Cox分析筛选与患者生存预后明显相关的风险基因,构建预后风险评分模型;根据模型计算患者风险值并验证模型,利用GEPIA2.0网页工具与HPA数据库对风险基因在HCC中的表达情况以及与生存预后的关系进行验证。结果发现,HCC肿瘤组织相较正常组织共筛选到61个差异表达的自噬相关基因(表达上调57个,下调4个),GO富集与KEGG通路分析显示均与自噬有关;单因素Cox分析共筛选到12个与患者生存预后相关的基因,多因素Cox分析后共有4个基因被纳入预后风险评分模型,分别是SQSTM1、HDAC1、RHEB和ATIC,计算公式为:风险值(risk score)=SQSTM1表达量×0.185+HDAC1表达量×0.382+RHEB表达量×0.423+ATIC表达量×0.438;K-M生存曲线显示高风险组生存率低于低风险组,风险曲线提示4个基因与不良预后密切相关,ROC曲线证明模型具有预测意义;GEPIA2.0网页工具以及HPA数据库表明高表达4个基因均导致患者生存率降低。所构建预后风险评分模型可有效预测HCC患者生存预后情况,并提供个性化诊疗策略。
关键词: 肝细胞癌    自噬    预后模型    
Prognostic roles of autophagy-associated genes in patients with hepatocellular carcinoma
GUI Ziwei1, LI Yan1, WANG Xinyuan1, HAN Jiaqi2, YAO Shiqi3, NIU Xiaochen1     
1. The Second Clinical College, Shanxi Medical University, Taiyuan 030000, China;
2. College of Pharmacy, Shanxi Medical University, Taiyuan 030000, China;
3. The First Clinical College, Shanxi Medical University, Taiyuan 030000, China


Abstract: A prognostic model composed of autophagy-related genes was constructed to predict the survival and prognosis of patients with hepatocellular carcinoma (HCC) and provide basis for individualized diagnosis and clinical research. The sequencing information of HCC in TCGA database and human autophagy database was utilized to screen differentially expressed autophagy-related genes for GO enrichment and KEGG pathway analysis. The risk genes significantly related to survival prognosis were screened through univariate and multivariate Cox analyses to construct prognostic risk score model. The patient risk values were calculated, and the models were verified. GEPIA2.0 web tools and HPA database were emplayed to verify the expression of risk genes in the HCC and the relationship with survival prognosis. Results show that compared with normal tissues, a total of 61 differentially expressed autophagy-related genes (57 up-regulated and 4 down-regulated) were screened from HCC tumor tissues. GO enrichment and KEGG pathway analysis results showed that these genes were autophayg-associated. A total of 12 genes related to survival and prognosis of patients were selected by univariate Cox analysis. After multivariate Cox analysis, four genes (SQSTM1, HDAC1, RHEB. and ATIC) were included in the prognostic risk scoring model. The formula was as follows: risk score=SQSTM1 expression levels×0.185+HDAC1 expression levels×0.382+RHEB expression levels×0.423+ATIC expression levels×0.438. K-M survival curves showed that the survival rate in high risk group was lower than that in low risk group, risk curves suggested that four genes were closely related to poor prognosis, and ROC curves proved that the model had predictive significance. Results obtained from GEPIA2.0 web tool and HPA database showed that the high expression of four genes resulted in reduced survival. The constructed prognostic risk score model can effectively predict the survival and prognosis of patients and provide personalized diagnosis and treatment strategies.
Key Words: Hepatocellular carcinoma    Autophagy    Prognostic model    
肝细胞癌(Hepatocellular carcinoma, HCC)是原发于肝脏的上皮性恶性肿瘤,约占原发性肝癌的90%以上[1]。2018年我国HCC患者新增39.3万例,死亡36.9万例,是中国癌症死亡的第二大原因[2-3]。由于HCC发病较为隐匿,大多数患者就诊时已是晚期,对其生存预后的评估主要依靠临床有创性检查,即TNM分期系统。其主要缺点为T期根据原发肿瘤的大小来划分,未能反映原发灶的厚度对淋巴结转移的影响,并且由于HCC高度的异质性,分期系统的预测准确性降低,不足以精确评估HCC患者的预后情况,急需新的预后标志物指导HCC患者的个体化治疗。自噬是依赖溶酶体系统对损伤或无用的细胞器与蛋白质等进行降解的一种途径,产生的能量可供应细胞存活和细胞器的更新[4]。近年来自噬与肿瘤之间的关系受到广泛关注,一方面自噬在血管生成较少的肿瘤中心部位发挥促进肿瘤形成的作用[5];另一方面自噬通过减少受损或无用的细胞器与蛋白质的积累,限制氧化应激等过程,从而抑制癌症的发生[6]。自噬与HCC的研究表明,自噬广泛参与该肿瘤的发生与侵袭性生长[7-9],其可通过激活Wnt /β-catenin信号传导来诱导MCT1表达,从而促进HCC细胞的转移和糖酵解;不同的肿瘤微环境中,通过肿瘤和免疫成分的协同作用可调节癌细胞自噬,从而诱导炎性单核细胞促进HCC的发生。

由于自噬与肿瘤的相互作用受到许多自噬相关基因(ATGs)的调控,瘤组织中ATGs的表达情况可以用来评估患者的生存预后,相关研究已在非小细胞肺癌、多形性胶质母细胞瘤以及肾透明细胞癌等报道[10-12]。因此,构建包含有多个ATGs的风险评分模型来预测HCC患者的生存预后,既可填补该方法在HCC中的研究空白,又能实现对HCC患者更精准的预后评估,为其个性化治疗提供重要参考。本研究联合TCGA数据库与人类自噬基因数据库,通过构建自噬相关基因的预后模型预测HCC患者的生存预后情况,为相关临床治疗提供诊疗依据与治疗靶点。

1 材料与方法1.1 数据资源首先绘制本研究设计流程图,之后利用癌症基因组图谱数据库(The Cancer Genome Atlas, TCGA, https://portal.gdc.cancer.gov/)下载肝细胞癌(Hepatocellular carcinoma, HCC)的3级RNA测序信息和相应的临床数据,其中包括374例HCC患者的肿瘤组织测序信息和50例正常肝组织测序信息。利用perl语言(perl 5.30.2)进行数据提取,之后将表达矩阵文件中的“Ensembl_Stable_ID”转换为“Gene Symbol”,从人类自噬基因数据库(Human Autophagy Database, HADb, http://www.autophagy.lu/)下载232个与自噬有关的基因信息。将表达矩阵中的基因与232个自噬相关基因取交集,重新整理为自噬相关基因的表达矩阵,并绘制Venn图。由于本研究所用数据来源于TCGA数据库,故不需要相关伦理学审核与批准。

1.2 自噬相关基因差异分析使用R语言(R3.6.3)中的limma包,筛选差异表达的基因,筛选标准为:错误发现率(False discovery rate, FDR)BH法矫正后的阈值P.adj<0.01,对数差异表达倍数变化绝对值|log2FC|>1。使用pheatmap包绘制差异基因的火山图,使用ggpubr包绘制差异基因箱线图。

1.3 GO富集分析和KEGG通路分析利用R语言对差异表达的自噬相关基因进行基因本体功能(Gene Ontology, GO)富集分析和京都基因与基因组百科全书通路(Kyoto Encyclopedia of Genes and Genomes pathway,KEGG pathway)分析。首先下载clusterProfiler、enrichplot和ggpggplot2三个数据包,阈值设置为P<0.01、Q<0.01,之后与基因组背景对比。通过GO富集分析,得到显著富集的GO功能词条(Term),其中生物过程(Biological process,BP)、细胞成分(Cellular component,CC)和分子功能(Molecular function,MF)为主要的分析对象。通过KEGG通路分析,得到显著性富集的pathway。

1.4 预后风险评分模型构建利用perl语言将差异表达的自噬相关基因表达量与生存时间进行合并,剔除生存信息不完整的样本。利用R语言中的survival包对差异基因进行单变量Cox回归分析,设置阈值为P<0.001,明确基因表达水平与患者生存时间的关系,并绘制森林图。之后挑选P<0.001的基因,利用survival包进行多因素Cox回归分析,得到风险基因,构建可以预测生存时间的风险评分模型,并输出纳入模型基因的风险评分系数(Coef)。所构建的预后风险评分模型计算公式为:风险值(risk score)=风险基因表达量1×coef1+风险基因表达量2×coef2+...+风险基因表达量n×coefn

1.5 预后风险评分模型评价根据风险评分模型计算患者的风险值,从低到高排序后依据中位数将患者分为低风险组和高风险组。利用survival包和survminer包进行Kaplan-Meier (K-M) 生存分析,明确风险值和生存时间之间的关系,并绘制生存曲线。下载pheatmap包绘制高低风险组的风险曲线、生存状态图和风险基因热图。将各组患者的生存时间、生存状态、年龄、性别、WHO分级、分期、TNM分期及风险评分整理为数值数据,其中:生存状态(0,存活;1,死亡)、性别(0,女性;1,男性),剔除临床数据不完整的样本,利用survival包进行单因素与多因素的独立预后分析,并绘制森林图。利用survival ROC包绘制各项独立预后指标的ROC曲线,从而评估其预测的准确性。将各项临床数据整理为二分类变量,整理标准为:生存时间(<中位生存期;>中位生存期;单位:天)、生存状态(0,存活;1,死亡)、年龄(<=65岁;>65岁)、性别(男性;女性)、WHO分级(G1-2;G3-4)、分期(StageⅠ-Ⅱ;StageⅢ-Ⅳ)、T(T1-2;T3-4)、M(M0;M1)、N(N0、N1-3)。利用beeswarm包进行风险基因表达量与风险值同临床数据之间的相关性分析,以评估所筛选基因及构建模型是否同临床数据具有良好的相关关系。

1.6 风险基因外部数据验证利用GEPIA2.0网页工具中有关HCC的数据对模型中的风险基因进行验证,输出表达量统计图和生存曲线图,利用人类蛋白图谱(The Human Protein Atlas, HPA, https://www.proteinatlas.org/)中的临床样本来验证风险基因在正常与肿瘤组织中的的表达情况。

2 结果分析2.1 自噬相关基因差异分析利用TCGA数据库下载到374例患者和50例正常肝组织样本共计55 268个基因的表达数据,与自噬基因取交集绘制Venn图(见图 1a),差异分析后得到61个基因(表达上调57个,下调4个),差异基因火山图(见图 1b),肿瘤和非肿瘤组织中差异基因的相对表达量整理为箱线图(见图 1c)。

图 1(Figure 1)
图 1 自噬相关基因差异分析Figure 1 Differential analysis of autophagy-associated genes


2.2 GO富集与KEGG通路富集分析将61个自噬相关差异基因进行GO富集分析,共富集到225个GO terms,包括192个生物过程(BP),15个细胞成分(CC)和18个分子功能(MF)。按照p值由小到大分别筛选各组前10个GO terms。在生物过程方面,差异基因主要富集在自噬、自噬机制过程和巨噬细胞吞噬的调控;在细胞成分方面,主要富集在泡膜、自噬体和溶酶体膜;在分子功能方面,富集在蛋白激酶调节剂活性、激酶调节剂活性和泛素样蛋白连接酶结合等。差异基因的KEGG通路富集分析共得到46条信号通路,按照p值由小到大排序筛选前10个通路,结果主要富集在自噬和细胞凋亡通路上。具体富集分析结果(见表 1)。

表1(Table 1)
表 1 GO富集与KEGG通路分析Table 1 GO enrichment and KEGG pathway analyses 分析类型 ID 描述 基因比例 矫正后P值 Q值 基因名字 基因数量

生物过程(BP) GO: 0006914 自噬(autophagy) 31/61 7.10×10-30 4.82×10-30 ULK3/WDR45B/DRAM1/DDIT3/TSC2/ATG16L2/ CLN3/SQSTM1/RAB24/HGS/RHEB/VMP1/ RUBCN/NPC1/ATG9B/MAPK3/CASP3/ RPTOR/ATG10/ATG4B/ITGB4/FOXO1/ RB1CC1/GAPDH/DAPK2/MLST8/IRGM/ TSC1/TMEM74/RGS19/CAPNS1 31

生物过程(BP) GO: 0061919 利用自噬机制的过程(process utilizing autophagic mechanism) 31/61 7.10×10-30 4.82×10-30 ULK3/WDR45B/DRAM1/DDIT3/TSC2/ATG16L2/ CLN3/SQSTM1/RAB24/HGS/RHEB/VMP1/ RUBCN/NPC1/ATG9B/MAPK3/CASP3/ RPTOR/ATG10/ATG4B/ITGB4/FOXO1/RB1CC1/ GAPDH/DAPK2/MLST8/IRGM/TSC1/ TMEM74/RGS19/CAPNS1 31

生物过程(BP) GO: 0016236 巨自噬(macroautophagy) 24/61 6.07×10-25 4.12×10-25 ULK3/WDR45B/TSC2/ATG16L2/CLN3/ SQSTM1/HGS/RHEB/VMP1/RUBCN/ NPC1/ATG9B/MAPK3/CASP3/RPTOR/ ATG10/ATG4B/RB1CC1/GAPDH/MLST8/ IRGM/TSC1/TMEM74/CAPNS1 24

生物过程(BP) GO: 0010506 调节自噬(regulation of autophagy) 18/61 5.67×10-15 3.84×10-15 ULK3/DRAM1/DDIT3/TSC2/RHEB/ RUBCN/NPC1/MAPK3/CASP3/ RPTOR/FOXO1/RB1CC1/GAPDH/ DAPK2/MLST8/IRGM/TSC1/CAPNS1 18

生物过程(BP) GO: 0016241 调节巨自噬(regulation of macroautophagy) 13/61 4.09×10-12 2.77×10-12 TSC2/RHEB/RUBCN/NPC1/MAPK3/ CASP3/RPTOR/RB1CC1/GAPDH/ MLST8/IRGM/TSC1/CAPNS1 13

生物过程(BP) GO: 0070997 神经元丢失(neuron death) 13/61 2.90×10-8 1.97×10-8 TP63/DDIT3/FOS/CLN3/PARP1/ HSP90AB1/BAX/CAPN2/CASP3/ HSPA5/CASP8/GAPDH/TSC1 13

生物过程(BP) GO: 2001233 凋亡信号通路的调控(regulation of apoptotic signaling pathway) 13/61 1.66×10-7 1.12×10-7 TP63/DDIT3/PARP1/HDAC1/BAX/TP73/PEA15/ITGA6/PRKCD/RB1CC1/CASP8/BAK1/DAPK2 13

生物过程(BP) GO: 0000045 自噬体组装(autophagosome assembly) 8/61 1.87×10-7 1.27×10-7 ULK3/WDR45B/ATG16L2/ VMP1/ATG9B/ATG4B/ RB1CC1/IRGM 8

生物过程(BP) GO: 1905037 自噬体组织进入翻译页面(autophagosome organization) 8/61 2.15×10-7 1.46×10-7 ULK3/WDR45B/ATG16L2/ VMP1/ATG9B/ATG4B/RB1CC1/ IRGM 8

生物过程(BP) GO: 0097193 固有凋亡信号通路(intrinsic apoptotic signaling pathway) 11/61 4.82×10-7 3.27×10-7 TP63/DDIT3/PARP1/HDAC1/BAX/IKBKE/ TP73/CASP3/PRKCD/BAK1/DAPK2 11

细胞成分(CC) GO: 0005776 自噬体(autophagosome) 9/61 2.50×10-9 1.93×10-9 ATG16L2/CLN3/SQSTM1/RAB24/VMP1/ ATG9B/DAPK2/IRGM/TMEM74 9

细胞成分(CC) GO: 0000407 吞噬泡集合点(phagophore assembly site) 6/61 6.58×10-8 5.07×10-8 ULK3/WDR45B/SQSTM1/ VMP1/ATG9B/RB1CC1 6

细胞成分(CC) GO: 0005774 液泡膜(vacuolar membrane) 12/61 3.09×10-7 2.38×10-7 DRAM1/ATG16L2/CLN3/RHEB/VMP1/ HSP90AB1/NPC1/ATG9B/ RPTOR/SPNS1/IRGM/TMEM74 12

细胞成分(CC) GO: 0000421 自噬体膜(autophagosome membrane) 5/61 4.76×10-6 3.67×10-6 ATG16L2/VMP1/ATG9B/IRGM/TMEM74 5

细胞成分(CC) GO: 0098589 膜区(membrane region) 8/61 3.34×10-4 2.57×10-4 CLN3/CAPN2/NPC1/MAPK3/ CASP3/CD46/CASP8/RGS19 8

细胞成分(CC) GO: 0005765 溶酶体膜(lysosomal membrane) 8/61 3.90×10-4 3.00×10-4 DRAM1/CLN3/RHEB/HSP90AB1/ NPC1/RPTOR/SPNS1/TMEM74 8

细胞成分(CC) GO: 0098852 溶解液泡膜(lytic vacuole membrane) 8/61 3.90×10-4 3.00×10-4 DRAM1/CLN3/RHEB/HSP90AB1/ NPC1/RPTOR/SPNS1/TMEM74 8

细胞成分(CC) GO: 0005770 晚期胞内体(late endosome) 7/61 3.90×10-4 03.00×10-4 DDIT3/CLN3/SQSTM1/HGS/ RUBCN/NPC1/MAPK3 7

细胞成分(CC) GO: 0045121 膜筏(membrane raft) 7/61 1.20×103 9.23×10-4 CLN3/CAPN2/NPC1/MAPK3/ CASP3/CASP8/RGS19 7

细胞成分(CC) GO: 0098857 膜微结构域(membrane microdomain) 7/61 1.20×103 9.23×10-4 CLN3/CAPN2/NPC1/MAPK3/ CASP3/CASP8/RGS19 7

分子功能(MF) GO: 0019887 蛋白激酶调节活性(protein kinase regulator activity) 7/59 1.97×10-4 1.26×10-4 HSP90AB1/CASP3/RPTOR/ NRG1/CDKN2A/MLST8/IRGM 7

分子功能(MF) GO: 0004197 半胱氨酸型内肽酶活性(cysteine-type endopeptidase activity) 6/59 1.97×10-4 1.26×10-4 CAPN10/CAPN2/CASP3/ ATG4B/CASP8/CAPNS1 6

分子功能(MF) GO: 0031072 热休克蛋白结合(heat shock protein binding) 6/59 1.97×10-4 1.26×10-4 TSC2/HSP90AB1/BAX/ HSPA5/BAK1/TSC1 6

分子功能(MF) GO: 0051400 BH域结合(BH domain binding) 3/59 2.23×10-4 1.43×10-4 BAX/BAK1/IRGM 3

分子功能(MF) GO: 0019207 激酶调节活动(kinase regulator activity) 7/59 2.37×10-4 1.52×10-4 HSP90AB1/CASP3/RPTOR/NRG1/CDKN2A/MLST8/IRGM 7

分子功能(MF) GO: 0051087 伴侣蛋白结合(chaperone binding) 5/59 7.11×10-4 4.56×10-4 BAX/HSPA5/BIRC5/BAK1/TSC1 5

分子功能(MF) GO: 0004198 钙依赖性半胱氨酸型内肽酶活性(calcium- dependent cysteine- type endopeptidase activity) 3/59 7.11×10-4 4.56×10-4 CAPN10/CAPN2/CAPNS1 3

分子功能(MF) GO: 0008234 半胱氨酸型肽酶的活动(cysteine- type peptidase activity) 6/59 8.92×10-4 5.72×10-4 CAPN10/CAPN2/CASP3/ ATG4B/CASP8/CAPNS1 6

分子功能(MF) GO: 0044389 泛素样蛋白连接酶结合(ubiquitin- like protein ligase binding) 7/59 1.70×10-3 1.09×10-3 SQSTM1/HGS/HSP90AB1/IKBKE/ HSPA5/FOXO1/CASP8 7

分子功能(MF) GO: 0030295 蛋白激酶激活物的活性(protein kinase activator activity) 4/59 3.14×10-3 2.01×10-3 RPTOR/NRG1/MLST8/ IRGM 4

KEGG通路分析 hsa04140 自噬-动物(Autophagy-animal) 16/48 5.05×10-15 2.67×10-15 TSC2/ATG16L2/SQSTM1/ RHEB/VMP1/RUBCN/ATG9B/ MAPK3/RPTOR/ATG10/ATG4B/ PRKCD/RB1CC1/DAPK2/ MLST8/TSC1 16

KEGG通路分析 hsa05165 人类乳头瘤病毒感染(Human papillomavirus infection) 14/48 2.98×10-7 1.58×10-7 TSC2/ITGA3/HDAC1/RHEB/BAX/ IKBKE/MAPK3/CASP3/ITGA6/ ITGB4/FOXO1/CASP8/ BAK1/TSC1 14

KEGG通路分析 hsa04210 细胞凋亡(Apoptosis) 10/48 2.98×10-7 1.58×10-7 DDIT3/FOS/PARP1/ BAX/CAPN2/MAPK3/ CASP3/CASP8/BIRC5/BAK1 10

KEGG通路分析 hsa01524 铂耐药(Platinum drug resistance) 7/48 8.89×10-6 4.71×10-6 BAX/MAPK3/CASP3/CDKN2A/ CASP8/BIRC5/BAK1 7

KEGG通路分析 hsa04211 长寿蛋白调节通路(Longevity regulating pathway) 7/48 2.67×10-5 1.42×10-5 TSC2/RHEB/BAX/RPTOR/ FOXO1/RB1CC1/TSC1 7

KEGG通路分析 hsa04136 自噬-其他(Autophagy-other) 5/48 2.67×10-5 1.42×10-5 ATG9B/RPTOR/ATG10/ ATG4B/MLST8 5

KEGG通路分析 hsa04215 细胞凋亡-多物种(Apoptosis- multiple species) 5/48 2.67×10-5 1.42×10-5 BAX/CASP3/CASP8/ BIRC5/BAK1 5

KEGG通路分析 hsa05162 麻疹(Measles) 8/48 2.79×10-5 1.47×10-5 FOS/BAX/IKBKE/TP73/CASP3/ CD46/CASP8/BAK1 8

KEGG通路分析 hsa04115 p53信号通路(p53 signaling pathway) 6/48 6.79×10-5 3.59×10-5 TSC2/BAX/TP73/CASP3/ CDKN2A/CASP8 6

KEGG通路分析 hsa04218 细胞衰老(Cellular senescence) 8/48 6.79×10-5 3.59×10-5 TSC2/SQSTM1/RHEB/CAPN2/ MAPK3/CDKN2A/FOXO1/TSC1 8



表 1 GO富集与KEGG通路分析Table 1 GO enrichment and KEGG pathway analyses


2.3 预后风险评分模型构建剔除临床信息不完整的样本,共有370例HCC患者的表达数据被纳入。61个自噬相关差异基因的单因素Cox回归分析提示,共有12个基因和患者的生存预后明显相关,整理为森林图(见图 2)。多因素Cox回归分析提示,有4个基因和患者的生存预后明显相关,可作为风险基因用来构建预测模型(见表 2),分别是SQSTM1(HR 1.203,P=0.030)、HDAC1(HR 1.465,P=0.019)、RHEB(HR 1.526,P=0.026)和ATIC(HR 1.550,P=0.006)。所建立的预后风险评分模型公式为:风险值(risk score)=SQSTM1表达量×0.185+HDAC1表达量×0.382+RHEB表达量×0.423+ATIC表达量×0.438。

图 2(Figure 2)
图 2 单因素Cox分析森林图Figure 2 Forest map for univariate Cox analysis


表2(Table 2)
表 2 多因素Cox分析Table 2 Multivariate Cox analysis Id coef HR HR.95L HR.95H P.value

SQSTM1 0.184 841 171 1.203 027 349 1.017 807 315 1.421 953 625 0.030 243 922

HDAC1 0.382 125 043 1.465 395 311 1.065 050 246 2.016 227 333 0.018 922 640

RHEB 0.422 804 897 1.526 236 494 1.052 745 903 2.212 687 628 0.025 666 459

ATIC 0.437 935 865 1.549 505 527 1.135 585 605 2.114 298 886 0.005 748 034



表 2 多因素Cox分析Table 2 Multivariate Cox analysis


2.4 预后风险评分模型评价利用风险评分模型计算公式计算370例患者的风险值,共有185例患者属于低风险,185例患者为高风险。Kaplan-Meier (K-M) 生存分析(见图 3a)显示,高风险患者的生存率明显低于低风险患者(P=2.967×10-4)。高风险患者1年生存率为72.0%,低风险为92.0%;3年生存率前者为50.0%,后者为71.0%。风险曲线(见图 3b)表明从低到高排序后,患者的风险值逐渐增大;生存状态图(见图 3c)表明高风险组死亡个体数多于低风险组;风险基因热图显示(见图 3d)高风险组中SQSTM1、HDAC1、RHEB和ATIC的表达量均高于低风险组,证明4个基因均为高风险基因。单因素独立预后分析(见图 3e)与多因素独立预后分析(见图 3f)联合说明,仅有风险值可作为患者生存预后的危险因子,随着风险值增高,患者的生存率逐渐降低。独立预后分析相关的ROC曲线(见图 3g)显示,风险值的AUC值为0.751,具有一定预测能力。风险基因表达量与风险值同临床数据之间的相关性分析表明,HDAC1(见图 4a)、ATIC(见图 4b)与风险值(见图 4c)同生存时间呈负相关关系;SQSTM1(见图 4d)、HDAC1(见图 4e)、RHEB(见图 4f)与ATIC(见图 4g)的表达及风险值(见图 4h)在死亡个体中均高于存活个体。因此,4个风险基因及风险值同患者的生存数据具有良好的相关关系,所构建模型可用来评估患者的生存预后情况。

图 3(Figure 3)
图 3 预后风险评分模型评价Figure 3 Evaluation of prognostic risk score model


图 4(Figure 4)
图 4 临床相关性分析Figure 4 Clinical correlation analysis


2.5 风险基因外部数据验证GEPIA2.0网页工具中共有369例HCC患者数据和160例正常组织样本,分别输出SQSTM1(见图 5a)、HDAC1(见图 5b)、RHEB(见图 5c)和ATIC(图见5d)的表达量统计图(红色代表肿瘤组织,黑色代表正常组织),可见4个基因在肿瘤中表达量均高于正常组织样本。输出SQSTM1(见图 5e)、HDAC1(见图 5f)、RHEB(见图 5g)和ATIC(见图 5h)的生存曲线图,发现高表达4个风险基因组的生存率均低于低表达组。利用HPA数据库中的临床样本病理学与组织学免疫组化染色图发现,SQSTM1(见图 6a)、HDAC1(见图 6b)、RHEB(见图 6c)和ATIC(见图 6d)在肿瘤中的表达量均高于正常组织,这与GEPIA2.0中得到的统计图结果一致。

图 5(Figure 5)
图 5 GEPIA网页工具Figure 5 GEPIA web tool


图 6(Figure 6)
图 6 HPA数据库Figure 6 HPA database


3 讨论自噬在肝细胞癌的发生发展中发挥重要作用,但其调控网络较为复杂,不同的自噬相关基因发挥促癌或抑癌作用。通过单因素与多因素Cox回归分析,将纳入预后模型的4个基因赋予不同的风险评分系数,以生存时间为判断标准,明确其对肿瘤起促进作用或抑制作用,这也为后续治疗靶点的选择提供了依据。

已知P62(即SQSTM1基因)是一个经典的自噬标记基因,在溶酶体降解途径中P62作为受体与泛素化蛋白结合并将其运送到自噬体参与选择性自噬的过程,细胞内自噬受损、P62蛋白累积使染色体突变从而促进细胞癌变、肿瘤形成。研究表明,P62和Caspase高表达的卵巢癌组织存活时间较低表达组织更长,P62和泛素化蛋白积累激活Caspase8,降低卵巢癌细胞对化疗的敏感性,促进卵巢癌的进展[13];在乳腺癌组织中,MYC的表达水平与P62增强乳腺癌细胞自我更新能力相关,高表达的P62通过抑制let-7a和let-7b的表达延缓MYC mRNA的降解,P62与MYC协同作用使乳腺癌恶化进展加速[14];激活Wnt/β-catenin通路诱导下游因子过量表达会促进黑色素瘤细胞侵袭转移,干扰P62表达后发现该通路及其下游因子的表达均受到抑制,表明P62可能通过调控该通路来促进癌细胞转移[15]

HDAC1(即组蛋白去乙酰化酶)与HAT(组蛋白乙酰化酶)共同调节组蛋白的乙酰化水平,在真核细胞中组蛋白乙酰化水平降低会抑制部分抑癌基因的转录从而促进癌症发生。研究发现,HDAC1基因在多种肿瘤组织中高表达,且其高表达刺激癌细胞增殖;大肠癌细胞UVRAG突变可增强化疗敏感性,HDAC1基因上调抑制UVRAG表达,促进大肠癌的发展[16];抑制卵巢癌组织HDAC1基因表达将减弱卵巢癌细胞的增殖能力、逆转癌组织顺铂耐药性[17];HDAC1在乳腺癌组织的表达水平显著高于癌旁组织,其表达水平随淋巴结转移数、临床分期的增加而升高[18]

细胞自噬受到RHEB基因(即脑Ras同源蛋白基因)的高度调控,该基因主要通过直接调节AMP活化蛋白激酶与控制mTOR信号通路进而调节其他ATGs两条途径来实现[19];mTOR信号通路与细胞生长、增殖与分化有关,RHEB基因是激活mTOR信号通路的关键基因。肝癌组织中RHEB表达水平显著高于正常组织,其表达水平随肝癌组织的临床分期而增加,敲除该基因发现HCC细胞生长速度和增殖能力明显降低[20],表明RHEB基因可能促进癌细胞生长增殖。

ATIC(氨基咪唑甲酰转移酶)是一种双功能蛋白酶,在生物合成过程中催化嘌呤合成的最后两步。肝癌组织中异常高表达的ATIC通过抑制AMPK的激活,活化mTOR-s6K1-S6信号,促进癌细胞的生长、增殖和迁移[21];研究表明,ATIC是一个有效的化疗放射增敏靶点,通过基因敲除或化学抑制可以使癌细胞转化到对辐射更敏感的细胞周期——G2/M期[22],从而提高治疗的有效性。

综上所述,本研究所筛选到的4个风险基因高表达与患者的不良预后显著相关,据此构建的预后风险评分模型有助于对HCC患者的预后情况进行评价,高风险组患者应接受更积极有效的治疗。本研究的特色之处在于,根据自噬与肿瘤发生发展具有密切联系这一前提出发,筛选到与患者生存预后密切相关的自噬基因,并成功构建预后模型,为HCC患者的精准预后评估提供新方法;本研究筛选到的风险基因,可作为HCC基础研究与治疗的可靠靶点;将风险基因的表达与生存情况在GEPIA2.0网页工具与HPA数据库中进行多维度的验证,具有一定新颖性。本研究的不足之处在于,没有在其他数据集中对所构建模型进行有效验证,从而提高模型的可靠性;没有针对风险基因在动物或细胞水平进行功能验证;所构建的预后模型仍需大规模多中心的临床试验进行检验;这些将在后续的研究中进一步探讨。

4 结论1) 本研究联合TCGA数据库与人类自噬数据库得到61个肿瘤组织中相较正常组织差异表达的自噬相关基因(DE-ATGs),对其进行GO富集和KEEG通路分析发现,DE-ATGs主要富集在自噬、利用自噬机制过程、细胞凋亡等过程中。

2) 单因素和多因素Cox回归分析筛选到4个与患者生存预后显著相关的基因,分别是SQSTM1、HDAC1、RHEB和ATIC,所构建预后风险评分模型为:风险值(Risk score)=SQSTM1表达量×0.185+HDAC1表达量×0.382+RHEB表达量×0.423+ATIC表达量×0.438。

3) 根据模型将HCC患者分为高风险组和低风险组,生存分析与临床相关性分析显示,4个风险基因与HCC患者的生存预后密切相关。


参考文献
[1] SHEN M Y, LIN L. Functional variants of autophagy-related genes are associated with the development of hepatocellular carcinoma[J]. Life Science, 2019, 235: 116675. DOI:10.1016/j.lfs.2019.116675 (0)


[2] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. DOI:10.3322/caac.21492 (0)


[3] DANIELA S, AUGUSTO V, SCOTT L F, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology, 2017, 152(4): 745-761. DOI:10.1053/j.gastro.2016.11.048 (0)


[4] 尹丽, 徐存拴. 自噬在大鼠肝再生中作用的初步探讨[J]. 生物信息学, 2017, 15(3): 156-163.
YIN Li, XU Cunshuan. Preliminary research on the role of autophagy in rat liver regeneration[J]. Chinese Journal of Bioinformatics, 2017, 15(3): 156-163. DOI:10.3969/j.issn.1672-5565.20161222001 (0)


[5] MAES H, KUCHNIO A, PERIC A, et al. Tumor vessel normalization by chloroquine independent of autophagy[J]. Cancer Cell, 2014, 26(2): 190-206. DOI:10.1016/j.ccr.2014.06.025 (0)


[6] GUO J Y, WHITE E. Autophagy, metabolism, and cancer[J]. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81: 73-78. DOI:10.1101/sqb.2016.81.030981 (0)


[7] FAN Q, YANG L, ZHANG X D, et al. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells[J]. Journal of Experimental & Clinical Cancer Research, 2018, 37(1): 9. DOI:10.1186/s13046-018-0673-y (0)


[8] CHEN D P, NING W R, LI X F, et al. Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma[J]. Autophagy, 2018, 14(8): 1335-1346. DOI:10.1080/15548627.2018.1474994 (0)


[9] ZHENG W, XIE W W, YIN D Y, et al. ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling[J]. Cell Communication and Signaling, 2019, 17(1): 42. DOI:10.1186/s12964-019-0353-3 (0)


[10] LIU Y, WU L, AO H, et al. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer[J]. Aging (Albany NY), 2019, 11(23): 11440-11462. DOI:10.18632/aging.102544 (0)


[11] WANG Z, GAO L, GUO X, et al. Development and validation of a nomogram with an autophagy-related gene signature for predicting survival in patients with glioblastoma[J]. Aging (Albany NY), 2019, 11(24): 12246-12269. DOI:10.18632/aging.102566 (0)


[12] CHEN Mei, ZHANG Shufang, NIE Zhenyu, et al. Identification of an autophagy-related prognostic signature for clear cell renal cell carcinoma[J]. Frontiers in Oncology, 2020, 29(10): 1-15. DOI:10.3389/fonc.2020.00873 (0)


[13] YAN Xiaoyu, ZHONG Xinru, YU Sihang, et al. p62 aggregates mediated caspase 8 activation is responsible for progression of ovarian cancer[J]. Journal of Cellular and Molecular Medicine, 2019, 23(6): 1-13. DOI:10.1111/jcmm.14288 (0)


[14] XU L Z, LI S S, ZHOU W, et al. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA[J]. Oncogene, 2017, 36(3): 304-317. DOI:10.1038/onc.2016.202 (0)


[15] 易娟娟, 招玉玲, 谢蒲辉, 等. P62基因对恶性黑色素瘤细胞侵袭的影响及机制研究[J]. 中国现代医学杂志, 2020, 30(10): 14-17.
YI Juanjuan, ZHAO Yuling, XIE Puhui, et al. The effect and mechanism of p62 gene on invasion of malignant melanoma cells[J]. Chinese Journal of Modern Medicine, 2020, 30(10): 14-17. DOI:10.3969/j.issn.1005-8982.2020.10.003 (0)


[16] JO Y K, PARK N Y, SHIN J H, et al. Up-regulation of UVRAG by HDAC1 inhibition attenuates 5FU-induced cell death in HCT116 colorectal cancer cells[J]. Anticancer Research, 2018, 38(1): 271-277. DOI:10.21873/anticanres.12218 (0)


[17] 吕腾. MiR-34a通过调控HDAC1抑制卵巢癌细胞增殖和顺铂耐药性机制的实验研究[D]. 济南: 山东大学, 2019. DOI: 10.27272/d.cnki.gshdu.2019.000697.
LV Teng. The mechanism of miR-34a inhibiting ovarian cancer cell proliferation and cisplatin resistance by regulating HDAC1[D]. Jinan: Shandong University, 2019. DOI: 10.27272/d.cnki.gshdu.2019.000697. (0)


[18] 刘鹏勇. HDAC1与E-cadherin在乳腺癌中的表达及其相关性的研究[D]. 佳木斯: 佳木斯大学, 2019. DOI: 10.27168/d.cnki.gjmsu.2019.000037.
LIU Pengyong. Expression and correlation of HDAC1 and E-cadherin in breast cancer[D]. Jamusi: Jamusi University, 2019. DOI: 10.27168/d.cnki.gjmsu.2019.000037. (0)


[19] 陈旭旭, 李丹妮, 陈鹏宇, 等. 脑Ras同源蛋白(Rheb)基因研究概况[J]. 绍兴文理学院学报(自然科学), 2020, 40(1): 53-58.
CHEN Xuxu, LI Danni, CHEN Pengyu, et al. An ovweview of the research on Ras homolog enriched in brain (Rheb) gene[J]. Journal of Shaoxing University of Arts and Science (Natural Science), 2020, 40(1): 53-58. DOI:10.16169/j.issn.1008-293x.k.2020.02.009 (0)


[20] LIU Fuchen, PAN Zeya, ZHANG Jinmin, et al. Overexpression of RHEB is associated with metastasis and poor prognosis in hepatocellular carcinoma[J]. Oncology Letters, 2018, 15(3): 3838-3845. DOI:10.3892/ol.2018.7759 (0)


[21] LI Minjing, JIN Changzhu, XU Maolei, et al. Bifunctional enzyme ATIC promotes propagation of hepatocellular carcinoma by regulating AMPK-mTOR-S6 K1 signaling[J]. Cell Communication and Signaling, 2017, 15(1): 52. DOI:10.1186/s12964-017-0208-8 (0)


[22] LIU Xiangfei, PAILA U D, TERAOKA S N, et al. Identification of ATIC as a novel target for chemoradiosensitization[J]. International Journal of Radiation Oncology Biology Physics, 2018, 100(1): 162-173. DOI:10.1016/I,ijrobp.2017.08.033 (0)



相关话题/基因 数据库 山西医科大学 组织 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 生物信息学分析筛选结直肠癌靶基因及评估预后价值
    生物信息学分析筛选结直肠癌靶基因及评估预后价值车运诚1,陈梅1,张昱1,2,张文静1,3(1.昆明理工大学医学院,昆明650500;2.云南省第一人民医院消化内科,昆明650032;3.云南省第一人民医院肿瘤内科,昆明650032)摘要:为寻找与结直肠癌发展和预后相关的潜在关键基因及信号通路。从美国 ...
    本站小编 Free考研考试 2021-12-04
  • 毗邻互通立交特长隧道交通组织方法
    毗邻互通立交特长隧道交通组织方法马兆有1,2,方守恩1,刘硕1,苏东兰3(1.道路与交通工程教育部重点实验室(同济大学),上海201804;2.道路交通安全公安部重点实验室(公安部交通管理科学研究所),江苏无锡214151;3.苏州科技大学土木工程学院,江苏苏州215011)摘要:为响应毗邻互通立交 ...
    本站小编 Free考研考试 2021-12-04
  • 群体基因组结构变异检测工作流
    群体基因组结构变异检测工作流曹舒淇,刘诗琦,姜涛(哈尔滨工业大学计算学部,哈尔滨150001)摘要:结构变异作为人类基因组上的一种大规模的变异类型,对分子与细胞进程、调节功能、基因表达调控、个体表型具有重要的影响,检测群体中基因组结构变异有助于绘制群体基因组变异图谱,刻画群体遗传进化特征,为疾病诊治 ...
    本站小编 Free考研考试 2021-12-04
  • 钢-混凝土组合梁负弯矩区裂缝宽度数值计算模型
    钢-混凝土组合梁负弯矩区裂缝宽度数值计算模型宋爱明1,李志聪2,徐洪涛3,万水1,周鹏1(1.东南大学交通学院,南京211189;2.河北省交通规划设计院,石家庄050011;3.河北科技大学建筑工程学院,石家庄050011)摘要:为得到较为准确的钢-混凝土组合梁负弯矩区裂缝宽度分析模式,综合考虑钢 ...
    本站小编 Free考研考试 2021-12-04
  • 基于TCGA数据库分析甲状腺癌基因表达谱
    基于TCGA数据库分析甲状腺癌基因表达谱赵国连1,王冀邯2,崔晓利1(1.西安市胸科医院检验科,西安710100;2.西北工业大学医学研究院,西安710072)摘要:为分析甲状腺癌基因表达谱,筛选疾病相关的基因标志物。基于肿瘤基因组图谱(TCGA)数据库中的甲状腺癌基因表达数据,运用R/Biocon ...
    本站小编 Free考研考试 2021-12-04
  • 利用TCGA数据库构建肾透明细胞癌相关miRNA预后模型
    利用TCGA数据库构建肾透明细胞癌相关miRNA预后模型高艾,王昕苑,苏依琳,苏龙龙,张建辉,牛晓辰(山西医科大学,太原030000)摘要:利用TCGA数据库中肾透明细胞癌的miRNA与mRNA数据及临床信息,构建由miRNA组成的预后风险评分模型,并筛选与生存预后相关的miRNA-mRNA调控关系 ...
    本站小编 Free考研考试 2021-12-04
  • MAML2基因表达及临床参数与低级别胶质瘤(LGG)患者的诊断及预后价值
    MAML2基因表达及临床参数与低级别胶质瘤(LGG)患者的诊断及预后价值李文才,夏少怀,夏学巍,王文波,陈力(桂林医学院附属医院神经外科,广西桂林541001)摘要:脑胶质瘤(Glioma)是最常见的中枢系统恶性肿瘤,MAML2是NOTCH信号通路的共激活因子,通过癌基因组数据库(TCGA)分析验 ...
    本站小编 Free考研考试 2021-12-04
  • 边光滑有限元-边界元耦合法计算二维瞬态涡流场
    边光滑有限元-边界元耦合法计算二维瞬态涡流场王洋洋,蒋兴良(输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆400044)摘要:为了提高二维瞬态涡流场的计算精度与速度,结合边光滑有限元法计算精度高和边界元法占用计算机内存少的优点,提出一种基于边光滑有限元法——边界元法相结合的混合算法(E ...
    本站小编 Free考研考试 2021-12-04
  • 自锚式悬索桥体系转换实用计算分析
    自锚式悬索桥体系转换实用计算分析向中富,蒋俊秋,陈桂成,张卓(重庆交通大学土木工程学院,重庆400074)摘要:为设计阶段更简洁方便地计算自锚式悬索桥在其体系转换过程中各吊索的张拉力,提出一种基于主缆内力状态计算吊索力的实用计算方法,根据吊索张拉完成的程度将主缆划分为张拉完成段与自由悬挂段两部分,借 ...
    本站小编 Free考研考试 2021-12-04
  • 供水管网计算分区方法的比较分析
    供水管网计算分区方法的比较分析李化雨,吴珊,侯本伟,程玉林(北京工业大学建筑工程学院,北京100124)䥺Symbol`@@摘要:针对现有的供水管网计算分区方法研究多基于单个管网案例进行验证,缺乏不同案例、不同需求下的比较和适用性分析的问题,基于深度优先搜索-部分接近度算法(DFS-PCC)、快 ...
    本站小编 Free考研考试 2021-12-04