基本信息科研方向(Research Area)论文专著(Publication)研究队伍(Research Team)科研项目(Research Project)教育教学(Education and Teaching)课题组新闻(News)
基本信息
汪国华,哈尔滨工业大学计算机科学与技术学院教授,博士生导师,2013年度当选教育部“新世纪优秀人才支持计划”。
主持国家自然科学基金3项,国家863项目1项,863子课题项目1项,黑龙江省留学归国人员基金1项,中国博士后科学基金特别资助项目1项等。
2008年以来已经在Nature Review Genetics, Nature Protocol, Nucleic Acids Research, BMC Genomics等国外重要生物信息学期刊发表SCI检索国际期刊论文39篇,影响因子合计197.8。其中第一作者和通讯作者论文14篇,他引总数265;第二作者9篇,他引总数326。H因子为16。
荣誉称号
2013年,教育部“新世纪优秀人才支持计划”2011年,中国计算机学会“2011CCF优秀博士学位论文奖提名”2011年,哈尔滨工业大学十三届优秀博士学位论文2011年,第十二届黑龙江省自然科学技术学术成果奖二等奖2009年,文章“Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferongamma-stimulated HeLa cells”在国际会议“Critical Assessment of Massive Data Analysis 2009”(CAMDA 2009)上获得唯一奖项“Best Presentation Award”
教育经历
1995 年 9 月 - 1999 年 7 月 哈尔滨工业大学计算机科学与技术学院 获工学学士学位2001 年 9 月 - 2003 年 7 月 哈尔滨工业大学计算机科学与技术学院 获工学硕士学位2003 年 9 月 - 2009 年 9 月 哈尔滨工业大学计算机科学与技术学院 获工学博士学位2006 年 11 月 - 2008 年 11 月 美国印地安那大学-普渡大学印第安纳波利斯分校访问学者2014 年 4 月 - 2016 年 4 月 美国约翰霍普金斯大学博士后
主要任职
哈工大计算机学院生物信息技术教研室副主任国际期刊《ISRN Genomics》期刊编委《BMC Genomics》期刊 Associate Editor《Biomedical research international》期刊特约编辑12th International Conference on Bioinformatics of the Asia-Pacific Bioinformatics Network(InCoB2013)和12th Asia-Pacific Bioinformatics Conference(APBC2014)国际会议程序委员会成员美国科学促进会(The American Association for the Advancement of Science, AAAS)会员中国计算机学会(CCF)高级会员,生物信息学专委委员中国计算机学会CCF YOCSEF哈尔滨分论坛学术委员InCoB2013、 APBC2014、 APBC2015、 ISBRA2018 国际会议程序委员会成员《BMC Genomics》、《BMC System Biology》、《Current Bioinformatics》和《Computational and Mathematical Methods in Medicine》和《Oncotarget》 等生物信息学期刊审稿人
工作经历
1999 年 7 月至 2004 年 7 月 哈尔滨工业大学计算机科学与技术学院 助教2004 年 7 月至 2009 年 9 月 哈尔滨工业大学计算机科学与技术学院 讲师2009 年 9 月至 2014 年 12 月 哈尔滨工业大学计算机科学与技术学院 副教授2014 年 12 月至今 哈尔滨工业大学计算机科学与技术学院 教授2016 年 12 月至今 哈尔滨工业大学计算机科学与技术学院 长聘教授
Research Area
(1) Analysis of massive high-throughput sequencing data
Key scientific and technical problems:
With the development of next generation of high-throughput sequencing technology, biological laboratory can product even more sequencing data than TB. After gaining these massive and high complex data, explaining them reasonably has become a greater difficulty. The storage, processing and analysis of massive high-throughput sequencing data are greatly challenging the current computer systems and calculation models. How to manage these massive sequencing data has become an important challenge for bioinformatics research area.
Research content:
Deeply study the management mechanism of massive sequencing data, such as storage model, index, transmission, access control and visualization, etc. The parallelization of high-throughput data analysis algorithm, analysis process of DNA-seq, RNA-seq and ChIP-seq, and workflow platform research are also the research focus.
(2) Research of the allele transcriptional regulation model in individual genome
Key scientific and technical problems:
For amphiploid species, gene difference expression between individuals is fundamentally determined by one or two alleles’ expression changing. Although the variation of gene expression level is ubiquitous in the individual, it is still very limited to understand the regulatory mechanism of this change, especially the regulatory polymorphism of alleles.
Research content:
Based on the next generation sequencing DNA-seq, RNA-seq and ChIP-seq data in the same individual genome, study the transcription factor affinity and alternative splicing pattern prediction model of alleles. Analyze the influence of the location, type and quantity of single nucleotide polymorphism (SNP) on the transcription factor affinity and alternative splicing of alleles. Predict the functional SNPs that cause the allele variation, and improve the function annotation of SNP sites. Provide strong support for biologists to study the gene structure and potential gene regulation mechanism of alleles.
(3) Research of non-coding gene transcriptional regulation and construction methods of regulatory network
Key scientific and technical problems:
In recent years, biologists have revealed the biological characteristics of many non-coding genes (such as microRNA, lncRNA, etc) and their relationship with diseases, but the research of these genes’ transcriptional regulation has developed slowly. The emergence of next generation sequencing technology provides data support for developing bioinformatics methods and predicting the transcription factors’ regulation to non-coding genes and the regulation between non-coding genes, which lays the foundation for better clarifying the biological characteristics of non-coding genes.
Research content:
By using ENCODE data, develop the system biology calculation model and study the genome structure of non-coding RNA. Identify the regulatory relationship between transcription factors and non-coding RNAs, and construct a gene regulatory network including non-coding RNAs. Improve the understanding of gene expression regulation from the perspective of system.
Publication
SCI papers:
1. Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nature Review Genetics. 2016;17(9):551-65 (影响因子: 40.282,中科院一区,他引: 35)
2. White DT#, Eroglu AU#, Wang G#, Zhang L, Sengupta S, Ding D, Rajpurohit SK, Walker SL, JiH, Qian J, Mumm JS. ARQiv-HTS, a versatile whole-organism screening platformenabling in vivo drug discovery at high-throughput rates. Nature Protocol. 2016 Dec;11(12):2432-2453 (并列第一作者,影响因子: 10.032 ,中科院一区,他引: 4)
3. Wang G*, Luo X, Wang J, Wan J, Xia S, Zhu H, Qian J, Wang Y. MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Res. 2018;46(D1):D146-D151(影响因子: 10.162,中科院一区)
4. Zou Q, Hu Q, Guo M, Wang G*. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy. Bioinformatics. 2015 Aug 1;31(15):2475-81 (影响因子: 7.307,中科院一区,热点论文,他引: 39)
5. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, Brown M, Hammond S, Srour EF, Liu Y, Nakshatri H. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009; 37(14):4850-4861 (影响因子: 7.836,中科院一区,他引: 168)
6. Liu Y#, Balaraman Y#, Wang G#, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009; 4(7):500-511. (并列第一作者,影响因子: 4.584,中科院二区,他引: 113)
7. Wang Y#, Wang G#, Yang B, Tao H, Yang JY, Deng Y, Liu Y. Reconstruct gene regulatory network using slice pattern model. BMC Genomics. 2009; 10 Suppl 1:S2. (co-first author) (并列第一作者,影响因子: 4.206,中科院二区,他引: 1)
8. Wang G, Wang Y, Feng W, Wang X, Yang JY, Zhao Y, Wang Y, Liu Y. Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics. 2008; 9 Suppl 2:S22 (影响因子: 3.759,中科院二区,他引: 30)
9. Wang G, Wang X, Wang Y, Yang JY, Li L, Nephew KP, Edenberg HJ, Zhou FC, Liu Y. Identification of transcription factor and microRNA binding sites in responsible to fetal alcohol syndrome. BMC Genomics. 2008; 9 Suppl 1:S19 (影响因子: 3.759,中科院二区,他引: 11)
10. Bhat-Nakshatri P, Wang G, Appaiah H, Luktuke N, Carroll JS, Geistlinger TR, Brown M, Badve S, Liu Y, Nakshatri H. AKT alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol. 2008; 28(24):7487-7503 (影响因子:6.057,中科院二区,他引: 40)
11. Wang G*, Wang F, Huang Q, Li Y, Liu Y, Wang Y. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites. Biomed Res Int. 2015;2015:757530 (影响因子: 2.476,中科院三区)
12. Wang G*, Liu Y, Zhu D, Klau GW, Feng W. Bioinformatics Methods and Biological Interpretation for Next-Generation Sequencing Data. Biomed Res Int. 2015; 2015:690873 (影响因子: 2.476,中科院三区)
13. Zhao Y, Zou Q; Jiang Y; Wang, G*. A Graphic Processing Unit Web Server for Computing Correlation Coefficients for Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 12(4), pp 582-584 (影响因子: 1.666,中科院三区)
14. Wang G*, Qi K, Zhao Y, Li Y, Juan L, Teng M, Li L, Liu Y, Wang Y. Identification of Regulatory Regions of Bidirectional Genes in Cervical Cancer. BMC Medical Genomics. 2013;6 Suppl 1:S5(影响因子: 2.873,中科院三区,他引: 8)
15. Wang G, Wang Y, Shen C, Huang Y, Kuang K, Huang T, Nephew K, Li L, Liu Y. RNA Polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. PLoS ONE. 2010;5(11): e13798 (影响因子: 4.092,中科院三区,他引: 27)
16. Wang G, Wang Y, Teng M, Zhang D, Li L, Liu Y. Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon γ – stimulated HeLa cells. PLoS ONE. 2010; 5(7):e11794 (影响因子: 4.092,中科院三区,他引: 9)
17. Zou Q, Li X, Jiang Y, Zhao Y, Wang G*. BinMemPredict: a Web server and software for predicting membrane protein types. Current Proteomics. 2013; 10(1): 2-9 (影响因子: 0.635, 他引:23,中科院四区)
18. Qu K, Han K, Wu S, Wang G, Wei L. Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods. Molecules. 2017 Sep 22;22(10) (影响因子: 2.861,中科院三区)
19. Liu S, Zibetti C, Wan J, Wang G, Blackshaw S, Qian J. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility. BMC Bioinformatics. 2017 Jul 27;18(1):355 (影响因子: 2.448,中科院二区)
20. Zhao Y, Wang F, Chen S, Wan J, Wang G. Methods of MicroRNA Promoter Prediction and Transcription Factor Mediated Regulatory Network. Biomed Res Int. 2017;2017:** (影响因子:影响因子: 2.476,中科院三区)
21. Peng J, Bai K, Shang X, Wang G, Xue H, Jin S, Cheng L, Wang Y, Chen J. Predicting disease-related genes using integrated biomedical networks. BMC Genomics. 2017 Jan 25;18(Suppl 1):1043 (影响因子: 3.729,中科院二区,高被引论文,他引: 6)
22. Campochiaro PA, Hafiz G, Mir TA, Scott AW, Zimmer-Galler I, Shah SM, Wenick AS, Brady CJ, Han I, He L, Channa R, Poon D, Meyerle C, Aronow MB, Sodhi A, Handa JT, Kherani S, Han Y, Sophie R, Wang G, Qian J. Pro-permeability Factors in Diabetic Macular Edema; the Diabetic Macular Edema Treated With Ozurdex Trial. Am J Ophthalmol. 2016;168:13-23(影响因子: 5.052,中科院二区)
23. Zou Q, Li J, Song L, Zeng X, Wang G. Similarity computation strategies in the microRNA-disease network: a survey. Brief Funct Genomics. 2015 Jul 1. pii: elv024 (影响因子: 4.098,中科院二区,高被引论文,他引: 51)
24. Oliver VF, Jaffe AE, Song J, Wang G, Zhang P, Branham KE, Swaroop A, Eberhart CG, Zack DJ, Qian J, Merbs SL. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics. 2015;10(8):698-707 (影响因子: 4.394,中科院二区,他引: 8)
25. Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, Qian J. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics. 2015 Feb 5;16:49 (影响因子: 3.729,中科院二区,他引: 30)
26. Campochiaro PA, Hafiz G, Mir TA, Scott AW, Sophie R, Shah SM, Ying HS, Lu L, Chen C, Campbell JP, Kherani S, Zimmer-Galler I, Wenick A, Han I, Paulus Y, Sodhi A, Wang G, Qian J. Pro-permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; The Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am J Ophthalmol. 2015 Oct 16. pii:S0002-9394(15)00604-2 (影响因子: 5.052,中科院二区,他引: 6)
27. Zhang D, Wang G, Wang Y. Transcriptional regulation prediction of antiestrogen resistance in breast cancer based on RNA polymerase II binding data. BMC Bioinformatics. 2014;15 Suppl2:S10 (影响因子: 2.435,中科院二区,他引: 1)
28. Zhu S, Wang G, Liu B, Wang Y. Modeling exon expression using histone modifications. PLoS ONE. 2013; 8(6): e67448 (影响因子: 3.234,中科院三区,他引: 4)
29. Cheng L, Wang G, Li J, Zhang T, Xu P, Wang Y. SIDD: A Semantically Integrated Database towards a Global View of Human Disease. PLoS One. 2013;8(10):e75504 (影响因子: 3.234,中科院三区,他引: 10)
30. Jiang Q, Wang G, S Jin, Y Li, Wang Y*. Predicting human microRNA-disease associations based on support vector machine. International Journal of Data Mining and Bioinformatics. 2013; 8(3):282-293 (影响因子: 0.495,他引: 22,中科院四区)
31. Juan L, Wang G, Radovich M, Schneider BP, Clare SE, Wang Y, Liu Y. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Medical Genomics. 2013;6 Suppl 1:S7 (影响因子: 2.873,中科院三区,他引: 40)
32. Teng M, Wang Y, Kim S, Li L, Shen C, Wang G, Liu Y, Huang T, Nephew KP, Balch C. Empirical Bayes model comparisons for differential methylation analysis. Comparative and Functional Genomics, 2012:376706 ( 影响因子: 1.747,中科院四区,他引: 1)
33. Zhu S, Jiang Q, Wang G, Liu B, Teng M, Wang Y. Chromatin structure characteristics of pre-miRNA genomic sequences. BMC Genomics. 2011 Jun 25;12:329 (影响因子: 4.397,中科院二区,他引: 5)
34. Shen C, Huang Y, Liu Y, Wang G, Zhao Y, Wang Z, Teng M, Wang Y, Flockhart DA, Skaar TC, Yan P, Nephew KP, Huang TH, Li L. A modulated Empirical Bayes Model for Identifying Topological and Temporal Estrogen Receptor alpha Regulatory Networks in Breast Cancer. BMC Syst Biol. 2011;5(1):67 (影响因子: 2.982,中科院二区,他引: 16)汪国华个人简历
35. Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R, Badve S, Thomson MJ, Hammond S, Steeg P, Liu Y, Nakshatri H. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene. 2011; 30(11):1290-1301
(影响因子:7.357,中科院一区,他引: 63)
36. Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol. 2010; 4 Suppl1:S2 (影响因子: 3.148,中科院二区,他引: 90)
37. Wang X, Wang K, Radovich M, Wang Y, Wang G, Feng W, Sanford JR, Liu Y. Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing. BMC Genomics. 2009; 10 Suppl 1:S4 (影响因子: 4.206,中科院二区,他引: 8)
38. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009; 37(Database issue):D98-104 (影响因子: 7.836,中科院一区,高被引论文,他引: 494, )
39. Wang X, Wang G, Shen C, Li L, Wang X, Mooney SD, Edenberg HJ, Sanford JR, Liu Y. Using RNase sequence specificity to refine the identification of RNA-protein binding regions. BMC Genomics. 2008; 9 Suppl 1:S17 (影响因子: 3.759,中科院二区,他引: 6)
EI Papers:
40. Teng M, Wang Y, Wang G, Jung J, Edenberg H, Sanford J, Liu Y. Prioritizing single-nucleotide variations that potentially regulate alternative splicing. BMC Proceedings, 2011; 5(Suppl 9):S40.
41. Jiang Q, Wang G, Wang Y. An approach for prioritizing disease-related microRNAs based on genomic data integration. The 3rd International Conference on BioMedical Engineering and Informatics (BMEI@#%10). 2010. p2270-2274 (EI 检索)
42. Jiang Q, Wang G, Zhang T, Wang Y. Predicting human microRNA-disease associations based on support vector machine. 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM@#%10). 2010. p467-472
43. Jiang Q, Hao Y, Wang G, Zhang T, Wang Y. Weighted network-based inference of human microRNA-disease associations. The 5th International Conference on Frontier of Computer Science and Technology. 2010. p431-435 (EI 检索)
44. Wang X, Teng M, Wang G, Zhao Y, Han X, Feng W, Li L, Sanford J, Liu Y, xIP-seq platform: an integrative framework for high-throughput sequencing data analysis. 2009 Ohio Collaborative Conference on Bioinformatics, OCCBIO 2009. p26-31 (EI 检索)
45. Wang X, Wang K, Wang G, Sanford J, Liu Y. Model-based prediction of cis-acting RNA elements regulating tissue-specific alternative splicing. 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008. p1-6 (EI 检索)
46. Chen AB, Hamamura K, Wang G, Xing W, Mohan S, Yokota H, Liu Y. Model-based comparative prediction of transcription-factor binding motifs in anabolic responses in bone. Genomics Proteomics Bioinformatics. 2007; 5(3-4):158-165.
47. Guo-hua Wang, Ya-Dong Wang, Mao-Zu Guo. An ontology-based method for similarity calculating between concepts in the semantic web. Proceedings of the fifth International Conference on Machine Learning and Cybernetics 2006. p1538-1542 (EI 检索)
Research Team
Doctoral candidates:
董立丽 2015
罗锡梅 2015
王 芳 2016
王嘉男 2016
王 聪 2017
王 欣 2017
Postgraduate students:
黄 玮 2017
许 立 2017
杨 阳 2017
Graduate students:
柳晓龙 2011届硕士研究生(北京腾讯公司)
奇 克 2012届硕士研究生(美国佐治亚理工大学博士)
闫晓惠 2012届硕士研究生(广东移动公司)
黄 倩 2014届硕士研究生 (上海华为)
付 强 2015届硕士研究生(大连LINE)
蒋璐凯 2015届硕士研究生
Admission Information
硕士研究生招生:
2019年招收硕士研究生3名:
计算机、生物信息等相关专业对生物信息感兴趣有一定的编程能力
博士研究生招生:
2019年招收博士研究生2名:
计算机、生物信息等相关专业对生物信息感兴趣具有一定的科研水平,能够独立完成一些科研任务
科研项目
项目名称转化医学生物信息技术及产品研发
项目来源国家863
开始时间2012-01-01
结束时间2015-12-01
项目经费523
担任角色负责
项目类别横向项目
项目状态完成
项目名称基于个体基因组单核苷酸突变的等位基因转录调控模型研究
项目来源国家自然科学基金面上项目
开始时间2014-01-01
结束时间2017-12-01
项目经费80
担任角色负责
项目类别横向项目
项目状态完成
项目名称面向个人基因组的生物信息学问题研究
项目来源2013年度教育部“新世纪优秀人才支持计划”
开始时间2014-01-01
结束时间2016-12-01
项目经费50
担任角色负责
项目类别横向项目
项目状态完成
项目名称基于CHIP-SEQ数据的microRNA启动子区域预测及转录因子结合位点分析
项目来源国家自然科学基金青年项目
开始时间2010-01-01
结束时间2012-12-01
项目经费20
担任角色负责
项目类别横向项目
项目状态完成
项目名称医学知识库与临床决策支持系统研发
项目来源国家863
开始时间2012-01-01
结束时间2015-12-01
担任角色负责
项目类别横向项目
项目状态完成
项目名称基于单核苷酸突变的等位基因转录调控模型研究
项目来源中国博士后科学基金特别资助
开始时间2012-10-01
结束时间2014-10-01
担任角色负责
项目类别横向项目
项目状态完成
项目名称基于微阵列数据的转录因子与microRNA调控功能研究
项目来源黑龙江省留学归国科学基金
开始时间2010-01-01
结束时间2012-12-01
担任角色负责
项目类别横向项目
项目状态完成
项目名称microRNA启动子识别算法研究
项目来源哈尔滨市科技创新人才研究专项资金项目
开始时间2011-01-01
结束时间2012-12-01
担任角色负责
项目类别横向项目
项目状态完成
项目名称等位基因转录调控模型研究
项目来源黑龙江省博士后特别资助
开始时间2013-01-01
结束时间2015-12-01
担任角色负责
项目类别横向项目
项目状态完成
项目名称哈尔滨工业大学基础研究杰出人才培育计划III类
项目来源哈尔滨工业大学
开始时间2014-01-01
结束时间2016-01-01
项目经费30
担任角色负责
项目类别横向项目
项目状态完成
项目名称结合甲基化 DNA 的转录因子识别及其调控功能研究
项目来源国家自然科学基金面上项目
开始时间2018.01
结束时间2021.12
项目经费65 万元
担任角色负责
项目类别横向项目
项目状态进行中
讲授课程
本科生课程《基因组信息学》 简介:通过本课程的学习,使学生掌握基因组基本结构与信息,基因组信息分析的基本原理和方法, 在对众多处理基因组信息的解决方法和解决问题思路有清晰的认识后,具备用一定的方法处理基因组信息,从中发现新颖、有用知识的基本能力,熟悉并且利用internet和基因组信息学分析软件进行信息数据库与查询,序列比对,基因组特征分析与功能基因组,分析microarray数据及新一代测序数据。
研究生课程《计算生物学》 简介:本课程从计算机科学的角度,在介绍生物信息学研究对象的生物学背景基础上,抽象出相应的数学概念以及计算模型,进而描述求解问题的有效算法,并对这些算法进行分析。通过课程的学习,使学生系统、扎实地了解和掌握计算分子生物学基本方法,高通量生物信息数据分析方法,侧重于培养学生抽象相应概念以及计算模型的能力。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-汪国华
本站小编 Free考研网/2019-05-25
相关话题/哈尔滨工业大学 计算机科学与技术学院 生物 经费 生物信息
哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-张宏莉
基本信息新页签基本信息 工作经历1999—2001:哈尔滨工业大学计算机与电气工程学院 讲师2001—2004:哈尔滨工业大学计算机科学与技术学院 副教授2003—目前:哈尔滨工业大学计算机网络与信息安全技术研究中心 副主任2004—目前:哈尔滨工业大学计算机科学与技术学院 教授2005—目前: ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-张英涛
基本信息科学研究教育教学论文专著基本信息暂无填写荣誉称号暂无填写工作经历暂无填写教育经历暂无填写主要任职暂无填写研究领域暂无填写团队成员暂无填写讲授课程暂无填写招生信息暂无填写 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-徐冰
基本信息科学研究教育教学基本信息徐冰,博士,副教授,任职于哈尔滨工业大学计算机科学与技术学院,语言技术中心机器智能与翻译实验室。先后承担国家自然科学基金重点项目、863重点项目,主持国家自然科学基金青年基金项目,哈工大重点实验室开放基金项目等,发表学术论文20余篇。研究方向:自然语言处理,文本信息抽 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-王忠杰
基本信息科学研究教育教学论文专著基本信息王忠杰,男,汉族,1978年生。工学博士,哈尔滨工业大学计算机科学与技术学院教授、博士生导师,副院长(国际合作、软件工程系)。联系方式电 话: **传 真: **E-mail: rainy@hit.edu ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-何慧
基本信息教育教学Biogaphical SketchPersonal InformationSelected Publications基本信息 何慧,女,汉族,1974年生。博士,教授,博士生导师。IEEE&IEEE Computer会员,中国计算机学会会员,ACM协会会员。哈尔滨工业大 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-刘挺
基本信息科学研究论文专著基本信息 工作经历时间工作经历1995-1998哈尔滨工业大学计算机系助教1998-1999哈尔滨工业大学计算机系讲师1999-2000微软中国研究院副研究员2000-2004哈尔滨工业大学计算机学院副教授2004-目前哈尔滨工业大学计算机学院教授2006-目前哈尔滨工业 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-刘远超
基本信息科学研究教育教学论文专著基本信息刘远超男,博士,副教授,博士生导师。研究方向:自然语言处理、机器学习、深度学习、数据挖掘等。博士生、硕士研究生招生联系方式每年可招收自然语言处理方向博士生1-2名、硕士生3人。主要培养方向:自然语言处理、机器学习、深度学习等。请发邮件: ycliuharbin ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-范晓鹏
基本信息Xiaopeng Fan科研/Research项目/Projects教学/Teaching招生信息2019级硕士博士已招满。招收2020级硕士生、博士生(含与高文院士联合指导),研究方向计算机视觉、数据压缩、深度学习。在读期间可进入深圳鹏城实验室(www.pengchenglab.com), ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-单丽莉
基本信息科学研究论文专著招生信息基本信息 单丽莉,女,1976年生,博士,硕士研究生导师,目前就职于计算机科学与技术学院语言技术中心的智能技术与自然语言处理研究室(http://insun.hit.edu.cn) 。 2004年7月获得哈尔滨工业大学工学硕士学位。2016年7月获得哈尔滨工业大 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25哈尔滨工业大学计算机科学与技术学院/国家示范性软件学院研究生考研导师简介-秦兵
基本信息科学研究教育教学论文专著基本信息秦兵,女,哈尔滨工业大学计算机学院教授、博士生导师,哈尔滨工业大学社会计算与信息检索中心副主任。中国中文信息学会语言与知识计算专委会副主任,社会媒体信处理专委会情感分析专业组组长。多年来一直从事自然语言处理研究,主要研究方向:自然语言处理、文本挖掘、情感分析等 ...哈尔滨工业大学考研导师 本站小编 Free考研网 2019-05-25