删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于改进OK模型的土壤有机质空间分布预测——以宜都市红花套镇为例

本站小编 Free考研考试/2022-01-23

摘要
摘要:选择合适的土壤有机质(SOM)预测模型是提高区域化空间分布模拟精度的前提,也是监测土壤碳库动态变化和指导农田土壤肥力投入的基础。以湖北宜都红花套镇柑橘区为例,设置普通克里格(OK)插值的SOM结果作对照,分别建立SOM及其最显著相关辅助变量碱解氮间的建模协同克里格(COK1)、全局协同克里格(COK2)和两个融合辅助变量协同相关性的改进OK模型(CCOK1、CCOK2),探讨纳入辅助变量、改变辅助信息插值数量以及结合辅助变量协同相关性对SOM含量预测的影响。结果表明:1)OK、CCOK1和CCOK2的块基比为25%~75%,表现出中等空间自相关性,而COK1和COK2的块基比小于25%,具有强烈的空间自相关,SOM的空间异质性受结构性因素影响的比重更大。2)SOM的预测含量范围为7.38~29.03 g·kg-1,使用COK1和COK2模型插值获得的有机质空间分布较OK更为破碎,CCOK1和CCOK2的插值结果则呈连续片状分布,更符合研究区土地利用类型分布的实际情况。3)SOM的空间分布预测精度由高到低依次为CCOK1 ≈ CCOK2 > COK2 > COK1 ≈ OK,OK和COK1两者精度指标相近,COK2的拟合效果有一定改进,但CCOK1和CCOK2的相关系数(r)分别从0.10升高到0.70和0.69,均方根误差(RMSE)分别降低了15.40%和14.78%,预测精度最高。因此,本研究提出的融合辅助变量协同相关性的改进OK模型的估算效果最优且在最大程度上提高辅助信息的参与度,可为SOM预测提供参考。
关键词:土壤有机质/
辅助变量/
碱解氮/
协同相关性/
改进OK模型/
空间自相关性
Abstract:Choosing a suitable prediction model to estimate soil organic matter (SOM) content is not only a prerequisite to improve the accuracy of spatial distribution simulation, but also the basis for monitoring dynamic changes in soil carbon pool and for guiding soil fertility input in farming. In order to achieve this, a research was set up to investigate the advantages of combined traditional Ordinary Kriging (OK) interpolation and Co-Kriging (COK) interpolation in constructing a new model that integrates Cooperative Correlation of auxiliary variables with OK model (CCOK). The following three aspects were thus discussed:1) whether the inclusion of auxiliary variables had an impact on SOM prediction result; 2) what were the differences in SOM prediction results caused by changes in the number of auxiliary information interpolations; and 3) how improved SOM prediction accuracy by cooperative correlation of auxiliary variables. To address these research questions, we collected 329 soil samples from a citrus plantation in Honghuatao Town located in the north Yidu City, Hubei Province. Through physical and chemical analysis, 14 soil properties were extracted. The correlation between SOM and other soil properties were discussed based on Pearson correlation coefficient (r) and available nitrogen was chosen as model auxiliary variable with the most significant correlation with SOM. With reference of OK (the control), we constructed modeling COK (COK1), global COK (COK2) and two improved OK models (CCOK1 and CCOK2). Among the models, COK1 was a COK model which used modeling set auxiliary variables to participate in modeling. Based on COK1, COK2 changed the modeling set auxiliary variables to global auxiliary variables. CCOK1 and CCOK2 represented the OK interpolation models of two forms of functions constructed by the target variables and its auxiliary variables. Some of the results obtained were as follows:1) the range of the nugget/sill proportions of OK, CCOK1 and CCOK2 were 25%-75%, which belonged to medium spatial autocorrelation. However, the nugget/sill proportions of COK1 and COK2 were less than 25%, belonging to strong spatial autocorrelation. It then showed that the spatial variability of SOM as cross-variance function with auxiliary variables was more easily recognized by semi-variogram models. 2) The predicted SOM in the study area was within 7.38-29.03·kg-1. Compared with OK interpolation, the strong spatial autocorrelation of COK1 and COK2 meant that the spatial distribution of SOM was even more fragmented. Furthermore, plots of CCOK1 and CCOK2 predictions were flaky, with digital mapping results of SOM with higher or lower values, which was more consistent with the actual distribution of land use in the study area. 3) The accuracies of COK1 and OK were similar, but that of COK2 was higher than the above two. Nevertheless, the correlation coefficients (r) of CCOK1 and CCOK2 increased from 0.10 to 0.70 and 0.69, with root mean square errors (RMSE) decreasing by 15.40% and 14.78%, respectively. Finally, the overall accuracy of SOM digital soil mapping was CCOK1 ≈ CCOK2 > COK2 > COK1 ≈ OK. This indicated that CCOK model minimized error between measured and predicted values in SOM prediction. Thus, the synergy of combined SOM estimation and auxiliary variables was a better correlation than the addition of only auxiliary variables or changing the amount of auxiliary variables. The improved OK model proposed in this study improved the maximum participation of auxiliary information, thereby providing a reliable reference for SOM prediction.
Key words:Soil organic matter/
Auxiliary variable/
Available nitrogen/
Cooperative correlation/
Improved OK models/
Spatial autocorrelation



PDF全文下载地址:

http://www.ecoagri.ac.cn/article/exportPdf?id=cda0724d-3da9-40aa-ae52-b8cbdb2a9a1d
相关话题/空间 土壤 信息 湖北 农田

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 有机无机肥配施对玉米-豇豆种植系统土壤N<sub>2</sub>O排放的影响
    摘要摘要:在等施氮量条件下,比较有机肥与无机肥施用后旱地玉米-豇豆复种系统土壤硝化与反硝化作用、N2O排放与作物产量的变化,有助于正确认识肥料施用对N2O排放的影响,为制定大田合理的丰产减排措施提供理论依据。本研究通过田间试验,利用静态箱技术和BaPS气压过程分离技术研究了不同肥料类型处理(无机肥、 ...
    本站小编 Free考研考试 2022-01-23
  • 牛粪和生物炭对苹果根系生长、土壤特性和氮素利用的影响
    摘要摘要:以两年生红富士/平邑甜茶苹果为试材,采用15N同位素示踪技术,研究牛粪与生物炭不同配比对苹果根系生长、土壤特性和氮素吸收利用的影响,为苹果生产中合理施肥及可持续发展提供依据。试验共设6个处理:对照(CK)、100%牛粪(T1)、75%牛粪+25%生物炭(T2)、50%牛粪+50%生物炭(T ...
    本站小编 Free考研考试 2022-01-23
  • 不同覆盖措施对枸杞根系生长和土壤环境的影响
    摘要摘要:耐旱枸杞是西北干旱地区重要的经济作物,为了进一步了解不同覆盖时间和覆盖材料对枸杞土壤环境和水分利用的影响,为枸杞抗旱节水栽培与水分高效利用研究提供理论依据,以3年生‘宁杞1号’为试验材料,研究了秸秆和地膜在春季和秋季进行覆盖后,枸杞根系生理特性和分布、土壤储水量和温度等根系和土壤环境的变化 ...
    本站小编 Free考研考试 2022-01-23
  • 生物质炭对土壤物理性质影响的研究进展
    摘要摘要:生物质炭在农业与环境中的应用已成为近期国内外研究热点,有关生物质炭特性以及生物质炭对土壤化学、生物学性质和作物产量的影响,已经有一些综述,但是生物质炭对土壤物理性质影响的相关综述很少。本文对近10年生物质炭对土壤物理性质影响相关的研究成果进行了整理分析。研究结果发现生物质炭可以降低土壤容重 ...
    本站小编 Free考研考试 2022-01-23
  • 基于GIS的福建农田氮磷地表径流流失与污染风险评估
    摘要摘要:为了掌握福建省农田氮磷地表径流流失特征,以福建省的9个地级市为研究边界,通过对其辖区1985—2016年间农田氮、磷化肥施用量的调查,计算农田化肥氮磷的地表径流流失量,并在耦合农田化肥地表径流流失量、降雨和河网密度3个因素的基础上,分析福建省各地级行政区域农田化肥氮磷的污染风险等级,应用地 ...
    本站小编 Free考研考试 2022-01-23
  • 不同培肥方式对土壤有机碳与微生物群落结构的影响
    摘要摘要:为揭示旱作区耕地土壤有机碳累积规律及其与土壤微生物群落间的相互作用机制,试验采用磷脂脂肪酸(PLFA)指纹图谱及土壤腐殖质形态分组的方法,通过田间定位试验,研究了马铃薯-马铃薯-油用向日葵-马铃薯-油用向日葵轮作模式下,有机、无机肥配施(不施肥、单施化肥、化肥配施牛粪、化肥配施羊粪、化肥配 ...
    本站小编 Free考研考试 2022-01-23
  • 耕作方式转变对冬小麦季农田温室气体排放和产量的影响
    摘要摘要:合理耕作方式对农业可持续生产和减缓全球气候变化有重要意义。为评价耕作方式转变对农田温室气体排放的影响,本研究针对连续16年的长期旋耕小麦/玉米农田进行不同的轮耕处理,采用原位静态箱-气相色谱法分析了小麦季农田土壤3种温室气体CH4、CO2、N2O排放规律。试验共设3个处理:在前期旋耕基础上 ...
    本站小编 Free考研考试 2022-01-23
  • 保护性耕作下蚕豆/玉米/甘薯三熟制农田土壤呼吸、碳平衡及经济-环境效益特征
    摘要摘要:垄作和秸秆覆盖是实现西南丘陵区旱地农田稳产高产和固碳的适宜保护性耕作模式。为探讨该保护性耕作模式下蚕豆/玉米/甘薯三熟制农田土壤碳排放的特征,对平作无覆盖(T)、垄作无覆盖(R)、平作+秸秆半量覆盖(TS1)、垄作+秸秆半量覆盖(RS1)、平作+秸秆全量覆盖(TS2)、垄作+秸秆全量覆盖( ...
    本站小编 Free考研考试 2022-01-23
  • 减量施氮与间作大豆对华南地区甜玉米农田氮平衡的影响
    摘要摘要:本文在广东广州华南农业大学试验中心,通过大田定位试验(2015-2016年两年4季)对比了两种施氮水平[减量施氮(300kg·hm-2,N1)和常规施氮(360kg·hm-2,N2)]、3种种植模式[甜玉米单作(SS)、甜玉米//大豆2:3间作(S2B3)、甜玉米//大豆2:4间作(S2B ...
    本站小编 Free考研考试 2022-01-23
  • 离子界面行为在土壤有机无机复合体形成中的作用
    摘要摘要:土壤有机物质与土壤矿物质表面之间的相互作用普遍存在,有关土壤有机无机复合体形成理论的研究倍受关注,土壤有机质与矿物质结合的紧密程度直接关系到土壤碳库的稳定性,在环境科学与农业资源利用领域有重要意义。但关于土壤有机无机复合体形成机制还不完善,土壤宏观、介观及微观各尺度间的作用机制未能衔接。本 ...
    本站小编 Free考研考试 2022-01-23