删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华中科技大学生命科学与技术学院导师教师师资介绍简介-张胜民

本站小编 Free考研考试/2021-07-25

张胜民

同专业博导 同专业硕导
个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE


其他联系方式Other contact

· 邮编:
· 通讯/办公地址:
· 办公室电话:
· 移动电话:
· 邮箱:


个人简介Personal profile

张胜民:博士、二级教授/博士生导师、国际生物材料科学与工程院Fellow (FBSE)、TERMIS亚太当选主席、中国生物材料学会副理事长、国家重点研发计划首席科学家、中国科协首席科学传播专家;华中科技大学医疗器械监管科学研究院院长、华中科技大学先进生物材料与组织工程交叉学科中心主任、国际再生医学材料联合实验室主任。兼任CFDA/NMPA医疗器械技术审评专家咨询委员会委员、CFDA医疗器械分类技术委员会委员。美国Rice Universit...
More+

教育经历Education experience

1998.9 ~ 2003.6  武汉理工大学   -  材料学  -  博士学位  -  研究生(博士)毕业  -  Wuhan University of Technology 

工作经历Work experience

2003.12-至今 华中科技大学 -生命科学与技术学院


社会兼职Social affiliations

2021.1-至今 President-Elect, TERMIS-AP
2019.10-至今 中国生物材料学会副理事长
2018.1-至今 Council Member of TERMIS-AP
2015.8-至今 Rice University著名讲座Advances in Tissue Engineering 客座教授
2013.6-至今 国际再生医学材料系列大会常任共同主席
2019.7-至今 Advanced Healthcare Materials (IF=7.4), Guest Editor
2016.1-至今 英国皇家物理学会Biomedical Materials(IOP,UK)编委、特邀主编
2018.6-至今 国家药监局医疗器械审评咨询专家委员会委员
2018.6-至今 国家药监局医疗器械分类技术委员会委员



欢迎来到我的主页!

研究方向Research focus

组织工程
生物材料
生物医学工程


团队成员Research group

· 团队名称:华中科技大学先进生物材料与组织工程研究中心 团队介绍:以分子工程和纳米技术为手段,开展具有再生功能的人体组织的替代物及其装置的应用基础和高新技术研究,主要研究方向包括:分子与纳米复合/杂化生物材料、分子与纳米医学成像材料、细胞与基因活性生物材料(包括基因转染材料)、组织器官工程、生物制造(包括计算机辅助复杂组织器官工程)、生物材料与组织工程产品标准和法规。




张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



科学研究 中文主页 - 科学研究


研究领域
Representative Research Topics:


A. Bioenergetic-active materials (BAM): Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate egeneration. This BAM material originally developed by our team was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation (Science Advances 25 Mar 2020:Vol. 6, no. 13, eaay7608, Cover Highlight; DOI: 10.1126/sciadv.aay7608). A series of in vivo accelerated regenerations for challenging large segment bone defects are being performed using the innovative BAM materials.


B. 3D Bioprinting nano/micro-biomaterial species (Bio-inks) and interface tissueregeneration: Nano/micro-biomaterials (bio-inks) are the basic “architectural units”and “the soul” of 3D bioprinting, will define the precision and the overall property of biomanufacturing structures. The priority target bio-inks will be included: high bioactive nano/micro-CaP particles (functional element-doped CaP nano-particles), hybrid bioactive microspheres, gradient bioactive microsphere, etc. Based on the innovative bioactive species above, we designed and fabricated a smart biomimetic gradient scaffold for interface tissue (cartilage/subchondral bone/bone) regeneration, and a VEGF modified scaffold for enhanced blood vessel formation and bone regeneration (Biomaterials, 2017, 137: 37-48; Chemical Reviews, 2020, 120, 10744?10792;Advanced Healthcare Materials 2020, **; Nanoscale, 2017, 9: 5794-5805;Biomacromolecules, 2015, 16: 1987-1996; Biotechnology Advances, 2014, 32:744–760 ).


C. The “Fourth Element” for tissue engineering---Physics factors induced tissueregeneration: It was found that some physics properties (light, magnetism, electricity, stiffness, surface micro-pattern, etc.) could, as biochemical factors, produce effects on tissue regeneration. We proposed the “Fourth Element” of tissue engineering, adding the “Fourth Element”---physics factor to “three elements” of tissue engineering in the text book, and providing the first in vivo evidence for the mineralized HA micropattern to enhance bone regeneration (Biomaterials 2021, 268, 120561; Biomaterials, 2019, 218, 119334; Chemical Reviews, 2020, 120, 10744?10792).


D. Advanced biomaterials with the therapeutic and enhanced tissue regenerationfunctions----Se-substituted CaP grafts for malignant bone tumor treatment and regeneration. A huge challenge after resection of malignant bone is that the recurrence rate of malignant bone tumor was over 40%. Therefore, it is a major demand to develop biomaterials with the therapeutic function and promotion of bone tissue regeneration. We created a new material in the world, Se-substituted hydroxyapatite (Se-HA), by doping a beautiful element called selenium (meaning moon in Greek) in the hexagonal lattice of hydroxyapatite crystal (China InventPatent: CN9.1; US Patent: US 15/889,235, etc.). It was found that Se-HA biomaterials demonstrated the enhanced therapeutic function and accelerated bone regeneration for resection of malignant bone tumor (Biomaterials 2020, 257, 120253;ACS Nano, 2016, 10: 9927-9937; Advanced Healthcare Materials, 2015, 4: 1813-1818, coverhighlight; Interface Focus, 2012, 2: 378-386).


E. Regulatory science for medical devices: A major obstacle for innovative biomaterials devices translation is the lack of evaluation techniques, methods, criteria and tools. The purpose for developing regulatory science is to create such new techniques, new methods, new criteria, and new tools. With NMPA collaboration, we have initiated the Institute of Regulatory Science for Medical Devices at HUST, which will become a NMPA research unit in innovative medical devices evaluation fields (Chemical Reviews, 2020, 120, 10744?10792).


F. High bioactive bone repair devices and artificial skin products translation: With
more than 20 yrs. research achievement accumulation, we have developed over 10
orthopedic medical devices, artificial skin and wound dressing products, most of which
have gone into NMPA tracks for evaluation and approval. Up to now, 5 medical
devices were approved by CFDA/NMPA and FDA.




论文成果
[1] Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.Science Advances,6
[2] Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.Science Advances,6


专利
暂无内容


著作成果
暂无内容


科研项目
暂无内容






张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



研究领域 中文主页 - 科学研究 - 研究领域

Representative Research Topics:


A. Bioenergetic-active materials (BAM): Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate egeneration. This BAM material originally developed by our team was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation (Science Advances 25 Mar 2020:Vol. 6, no. 13, eaay7608, Cover Highlight; DOI: 10.1126/sciadv.aay7608). A series of in vivo accelerated regenerations for challenging large segment bone defects are being performed using the innovative BAM materials.


B. 3D Bioprinting nano/micro-biomaterial species (Bio-inks) and interface tissueregeneration: Nano/micro-biomaterials (bio-inks) are the basic “architectural units”and “the soul” of 3D bioprinting, will define the precision and the overall property of biomanufacturing structures. The priority target bio-inks will be included: high bioactive nano/micro-CaP particles (functional element-doped CaP nano-particles), hybrid bioactive microspheres, gradient bioactive microsphere, etc. Based on the innovative bioactive species above, we designed and fabricated a smart biomimetic gradient scaffold for interface tissue (cartilage/subchondral bone/bone) regeneration, and a VEGF modified scaffold for enhanced blood vessel formation and bone regeneration (Biomaterials, 2017, 137: 37-48; Chemical Reviews, 2020, 120, 10744?10792;Advanced Healthcare Materials 2020, **; Nanoscale, 2017, 9: 5794-5805;Biomacromolecules, 2015, 16: 1987-1996; Biotechnology Advances, 2014, 32:744–760 ).


C. The “Fourth Element” for tissue engineering---Physics factors induced tissueregeneration: It was found that some physics properties (light, magnetism, electricity, stiffness, surface micro-pattern, etc.) could, as biochemical factors, produce effects on tissue regeneration. We proposed the “Fourth Element” of tissue engineering, adding the “Fourth Element”---physics factor to “three elements” of tissue engineering in the text book, and providing the first in vivo evidence for the mineralized HA micropattern to enhance bone regeneration (Biomaterials 2021, 268, 120561; Biomaterials, 2019, 218, 119334; Chemical Reviews, 2020, 120, 10744?10792).


D. Advanced biomaterials with the therapeutic and enhanced tissue regenerationfunctions----Se-substituted CaP grafts for malignant bone tumor treatment and regeneration. A huge challenge after resection of malignant bone is that the recurrence rate of malignant bone tumor was over 40%. Therefore, it is a major demand to develop biomaterials with the therapeutic function and promotion of bone tissue regeneration. We created a new material in the world, Se-substituted hydroxyapatite (Se-HA), by doping a beautiful element called selenium (meaning moon in Greek) in the hexagonal lattice of hydroxyapatite crystal (China InventPatent: CN9.1; US Patent: US 15/889,235, etc.). It was found that Se-HA biomaterials demonstrated the enhanced therapeutic function and accelerated bone regeneration for resection of malignant bone tumor (Biomaterials 2020, 257, 120253;ACS Nano, 2016, 10: 9927-9937; Advanced Healthcare Materials, 2015, 4: 1813-1818, coverhighlight; Interface Focus, 2012, 2: 378-386).


E. Regulatory science for medical devices: A major obstacle for innovative biomaterials devices translation is the lack of evaluation techniques, methods, criteria and tools. The purpose for developing regulatory science is to create such new techniques, new methods, new criteria, and new tools. With NMPA collaboration, we have initiated the Institute of Regulatory Science for Medical Devices at HUST, which will become a NMPA research unit in innovative medical devices evaluation fields (Chemical Reviews, 2020, 120, 10744?10792).


F. High bioactive bone repair devices and artificial skin products translation: With
more than 20 yrs. research achievement accumulation, we have developed over 10
orthopedic medical devices, artificial skin and wound dressing products, most of which
have gone into NMPA tracks for evaluation and approval. Up to now, 5 medical
devices were approved by CFDA/NMPA and FDA.








张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



论文成果 中文主页 - 科学研究 - 论文成果

[1] Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.Science Advances.6
[2] Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state.Science Advances.6

共2条1/1 首页上页下页尾页







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



专利 中文主页 - 科学研究 - 专利


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



著作成果 中文主页 - 科学研究 - 著作成果


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



科研项目 中文主页 - 科学研究 - 科研项目


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



教学研究 中文主页 - 教学研究


教学资源
暂无内容


授课信息
暂无内容


教学成果
暂无内容






张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



教学资源 中文主页 - 教学研究 - 教学资源


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



授课信息 中文主页 - 教学研究 - 授课信息


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



教学成果 中文主页 - 教学研究 - 教学成果


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



获奖信息 中文主页 - 获奖信息


共0条0/0







张胜民


同专业博导 同专业硕导

个人信息Personal information

教授博士生导师 硕士生导师
性别:男
在职信息:在职
所在单位:生命科学与技术学院
学历:研究生(博士)毕业
学位:博士学位
毕业院校:武汉理工大学
学科:生物医学工程
学术荣誉:
2014讲座教授
2018“973计划”项目及项目首席科学家
曾获荣誉:
2021President-Elect, TERMIS-AP
2016IUSBSE Fellow, FBSE



招生信息 中文主页 - 招生信息


共0条0/0






相关话题/生命科学与技术学院 华中科技大学