- 学院主页
 
姓名: 张诚坚
性别: 男
出生日期:
职位: 教授
电话:
Email: cjzhang@mail.hust.edu.cn
个人主页:
基本情况Basic 男,湖南平江人,华中科技大学二级教授,博士生导师,中国仿真算法专业委员会副主任委员,中国数学学会理事,中国计算数学学会常务理事,湖北省数学学会副理事长,《Contemporary Mathematics and Statistics》、《Abstract and Applied Analysis》、《数学杂志》编委。
教育背景Educational background ● 1998年湖南大学应用数学专业毕业,获理学博士。 ● 1992年湘潭大学计算数学专业毕业,获理学硕士。 ● 1986年湘潭大学基础数学专业毕业,获理学学士。
工作经历Work experience ● 2004.3-Present, 华中科技大学任教,教授、博导,其间应邀访问美国加洲大学洛衫矶分校、美国伊利诺理工大学、香港浸会大学及中国科学院等单位。 ● 2002.2-2004.3,比利时鲁汶大学,Research Fellow 。 ● 1998.7-2002.2,华中科技大学任教,2000年控制科学与工程博士后流动站出站, 2001年破格晋升为教授。 ● 1992.7-1998.7,湖南大学任教,1997年破格晋升为副教授。 ● 1986.7-1989.8,长沙理工大学任教, 助教。
研究方向Research fields ● 刚性积分-微分方程数值解 ● 微分代数方程数值解 ● 时滞动力学系统及其数值模拟 ● 并行算法与科学工程模型仿真计算
科研成果Scientific achievements科研项目 1.国家自然科学基金资助课题“时滞微分方程的数值动力性”, NSFC **, 2012-2015,主持. 2. 国家自然科学基金重大研究计划重点项目“随机微分方程高性能数值算法理论与应用 ”, NSFC **,2012-2015,排名第二. 3.湖北省自然科学基金资助课题“多体动力系统的高性能计算”, 2011CDB289,2012-2013,主持. 4.国家高技术研究发展计划(863计划)重点项目“机械系统动力学CAE平台”子课题:微分代数系统数值计算技术, 2009AA044501, 2010—2012, 主持。 5.国家自然科学基金资助课题“时滞微分代数系统的数值算法与理论”,NSFC **,2009~2011,主持。 6.国家自然科学基金资助课题“刚性离散-分布型延迟系统的高效数值算法”,NSFC **,2006~2008,主持。 7.教育部留学回国人员科研启动基金资助课题 “记忆型积分微分方程的高效算法”,教外司留[2005]383号,2005~2007,主持。 8.国家自然科学基金资助课题“刚性延迟系统仿真算法及其理论”,NSFC **,2000~2002, 主持。 9.中国博士后科学研究基金“刚性延迟系统数值处理及算法理论”, 中博基[1999]17号,1999~2000,主持。 10.比利时鲁汶大学科学研究基金课题“刚性延迟系统数值方法”,F/02/019,2002~2003,主持。 11.比利时鲁汶大学科学研究基金课题“刚性VOLTERRA延迟积分-微分方程数值方法:理论与实现”, F/03/022,2003~2004,主持。 12.国家自然科学基金资助课题“随机系统的稳定性及其在神经网络中的应用”, NSFC **,2001~2003, 排名第四。 13.国家自然科学基金资助课题“变分不等式的快速数值解法” ,NSFC **,1995~1997, 排名第四。英文期刊主要论著 [1] Hao Chen and Chengjian Zhang,Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations,Appl. Numer. Math.,2012, 62:141-154. (SCI) [2] Hao Chen and Chengjian Zhang,Stability analysis of linear multistep and Runge–Kutta methods for neutral multidelay-differential-algebraic systems, Math. Comput. Model., 2012, 55:530-537. (SCI) [3] Rui Qi,Chengjian Zhang and Yujie Zhang, Dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations, Acta Math. Appl. Sin., 2012,28: 225-236. (SCI) [4] Huiqin Chen, Jinqiao Duan and Chengjian Zhang, Elementary bifurcations for a simple dynamical system under non-Gaussian L?evy noises, Acta Math. Sci., 2012, 32B:1391–1398. (SCI) [5] Dongfang Li, Chengjian Zhang and Wansheng Wang, Long time behavior of non-Fickian delay reaction-diffusion equations, Nonlinear Anal.: RWA, 2012, 13:1401-1415. (SCI) [6] Dingwen Deng and Chengjian Zhang, A new fourth-order numerical algorithm for a class of nonlinear evolution equations, Numer. Meth. Part. Diff. Equ., 2012, Accepted. [7] Yuanling Niu and Chengjian Zhang, Almost sure and moment exponential stability of predictor-corrector methods for stochastic differential equations, J. Sys. Sci. Compl., 2012, 25:736-743. (SCI) [8] Hao Chen and Chengjian Zhang, Block boundary value methods for solving Volterra integral and integro-differential equations, J. Comput. Appl.Math., 2012, 236:2822–2837. (SCI) [9] Ming Wang, Dongfang Li, Chengjian Zhang and Yanbin Tang, Long time behavior of solutions of gKdV equations, J. Math. Anal. Appl., 2012, 390(1):136-150. (SCI) [10] Chengjian Zhang, A class of new Pouzet-Runge-Kutta-type methods for nonlinear functional integro-differential equations, Abst. Appl. Anal.,2012, 2012: Article ID 642318, 21 pages. (SCI) [11] Dingwen Deng and Chengjian Zhang, Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables, Numer. Algor., 2012, Accepted. [12] Dingwen Deng and Chengjian Zhang, Application of a fourth-order compact ADI method to solve a two-dimensional linear hyperbolic equation, Inter. J. Comput. Math., 2012, Accepted. [13] Dingwen Deng, Chengjian Zhang,A new fourth-order numerical algorithm for a class of nonlinear wave equations, Appl. Numer. Math., 2012, 62:1864-1879. (SCI) [14] Wenjie Shi, Chengjian Zhang,Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations, Appl. Numer. Math., 2012, 62:1954-1964. (SCI) [15] Qifeng Zhang, Chengjian Zhang, Compact difference scheme combined with extrapolation techniques for a class of neutral delay parabolic differential equations, Appl. Math. Lett., 2012, Accepted, [16] Dingwen Deng, Chengjian Zhang, A family of new fourth-order solvers for a nonlinear damped wave equation, Comput. Phys. Commun., 2013, 184: 86–101. (SCI) [17] Wang Wansheng and Zhang Chengjian, Analytical and numerical dissipativity for nonlinear generalized pantograph equations, Disc. Cont. Dyn. Syst. (Ser.A), 2011, 29: 1245–1260. (SCI) [18] Lan Zhang, Chengjian Zhang and Dongming Zhao, Hopf bifurcation analysis of integro-differential equation with unbounded delay,Appl. Math. Comput., 2011, 217: 4972–4979.(SCI) [19] Dongfang Li, Chengjian Zhang, Wansheng Wang and Yangjing Zhang, Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Model., 2011, 35: 2711-2722. (SCI) [20] Chengjian Zhang, Hao Chen and Leming Wang, Strang-type preconditioners applied to ordinary and neutral differential- algebraic equations, Numer. LinearAlgebra Appl., 2011, 18: 843-855. (SCI) [21] Yuanling Niu, Chengjian Zhang and Jinqiao Duan, A delay-dependent stability criterion for nonlinear stochastic delay-integro- differential equations, ActaMath. Sci., 2011, 31B: 1813–1822. (SCI) [22] Dongfang Li, Chengjian Zhang and Hongyu Qin, LDG method for reaction-diffusion dynamical systems with time delay, Appl. Math. Comput., 2011, 217: 9173–9181. (SCI) [23]Wansheng Wang, Chengjian Zhang and Dongfang Li, Asymptotic stability of exact and discrete solutions for neutral multidelay-integro- differential equations, Appl. Math. Model., 2011, 35: 4490–4506. (SCI) [24] Hao Chen and Chengjian Zhang, Boundary value methods for Volterra integral and integro-differential equations, Appl. Math. Comput., 2011,218: 2619-2630. (SCI) [25] Huiqin Chen, Jinqiao Duan, Xiaofan Li and Chengjian Zhang, A computational analysis for mean exit time under non-Gaussian Lévy noises, Appl. Math. Comput., 2011, 218: 1845–1856. (SCI) [26] Dongfang Li and Chengjian Zhang,Superconvergence of a discontinous Galerkin methods for first-order linear delay differential differential equations, J. Comput. Math., 2011, 29: 574–588. (SCI) [27] Wei Zou, Jianquan Lu, Yang Tang, Chengjian Zhang and Jürgen Kurths, Control of delay-induced oscillation death by coupling phase in coupled oscillators, Phy. Rev. E, 2011, 84, 066208. (SCI) [28] Dongfang Li and Chengjian Zhang, Split Newton iterative algorithm and its application, Appl. Math. Comput., 2010, 217: 2260–2265. (SCI) [29] Chengjian Zhang and Peng Lv, Unique solvability of numerical methods for stiff delay-integro-differential equations, J. Integ. Equ. Appl. ,2010, 22: 631–645. (SCI) [30] Chengjian Zhang and Hao Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Sim., 2010, 81: 100-108. (SCI) [31] Chengjian Zhang, Tingting Qin and Jie Jin, The extended Pouzet-Runge- Kutta methods for nonlinear neutral delay-integro-differential equations, Computing, 2010, 90: 57–71. (SCI) [32] Chengjian Zhang, Hao Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math., 2010, 60: 915-923. (SCI) [33] Lan Zhang, Chengjian Zhang and Dongming Zhao, Control of a class of chaotic systems by a stochastic delay method, Kybernetika, 2010, 46: 38-49. (SCI) [34] Wansheng Wang and Chengjian Zhang, Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math., 2010, 115: 451–474. (SCI) [35] Feiyan Xiao and Chengjian Zhang, Convergence analysis of Runge-Kutta methods for a class of retarded differential algebraic systems, Acta Math. Sci., 2010, 30B: 65–74. (SCI) [36] Dongfang Li and Chengjian Zhang, Nonlinear stability of discontinuous Galerkin methods for delay differential equations, Appl.Math. Lett., 2010, 23: 457-461. (SCI) [37] Chengjian Zhang, Tingting Qin and Jie Jin, An improvement of the numerical stability results for nonlinear neutral delay-integro- differential equations, Appl. Math. Comput., 2009, 215: 548-556. (SCI) [38] Feiyan Xiao and Chengjian Zhang, Existence and uniqueness of the solution of stochastic differential algebraic equations with delay, Adv. Sys. Sci. Appl., 2009, 9: 121-127. [39] Chengjian Zhang and Yaoyao He, The extended one-leg methods for nonlinear neutral delay-integro-differential equations, Appl. Numer. Math.,2009, 59: 1409-1418. (SCI) [40] Chengjian Zhang and Niu Yuanling, The stability relation between ordinary and delay-integro-differential equations, Math. Comput. Model., 2009, 49: 13-19. (SCI) [41] Chengjian Zhang andStefan Vandewalle,Stability criteria for exact and discrete solutions of neutral multidelay-integro-differential equations, Adv. Comput. Math., 28: 383-399, 2008. (SCI) [42] Lan Zhang and Chengjian Zhang, Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers, Kybernetika, 44: 35-42, 2008. (SCI) [43] Lan Zhang and Chengjian Zhang, Control of a class of chaotic systems using stochastic method, Dyn. Cont. Dis. Imp. Sys. (Ser. B), 2007, 14(S): 210-214. [44] Chengjian Zhang andStefan Vandewalle,General linear methods for Volterra integro-differential equations with memory, SIAM J. Sci. Comput., 27: 2010-2031,2006. (SCI) [45] Zhiyong Wang and Chengjian Zhang, An analysis of stability of Milstein methods for stochastic differential equations with delay, Comput. Math. Appl., 51: 1445-1452, 2006. (SCI) [46] Xiaoxin Liao, Yuli Fu, Shengli Xie and Chengjian Zhang, Globally exponential stability of Hopfield neural networks, Adv. Syst. Sci. Appl., 5: 533-545, 2005. [47] Chengjian Zhang and Stefan Vandewalle, Stability analysis of Runge- Kutta methods for nonlinear Volterra delay-integro-differential equations, IMA J. Numer. Anal., 24: 193-214, 2004. (SCI) [48] Chengjian Zhang and Stefan Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward different- tiation time discretization, J. Comput. Appl. Math., 164: 797-814, 2004. (SCI) [49] Chengjian Zhang, Nonlinear stability of Runge- Kutta methods applied to infinite-delay-differential equations, Math. Comput. Model., 39 : 495-503, 2004. (SCI) [50] Chengjian Zhang and Geng Sun, Boundedness and asymptotic stability of multistep methods for generalized pantograph equations, J. Comput. Math., 22: 447-456, 2004. (SCI) [51] Chengjian Zhang, NGP(a)-stability of General Linear Methods for NDDEs, Comput. Math. Appl., 47: 1105-1113, 2004. (SCI) [52] Chengjian Zhang, Convergence analysis for general linear methods applied to stiff delay differential equations, Prog. Nat. Sci.,12: 414-420, 2002. (SCI) [53] Chengjian Zhang and Geng Sun, The discrete dynamics of nonlinear infinte- delay-differential equations, Appl. Math. Lett.,15: 521-526, 2002. (SCI) [54] Chengjian Zhang, Nonlinear stability of natural Runge-Kutta methods for neutral delay differential equations, J. Comput. Math., 20: 561-574, 2002. (SCI) [55] Chengjian Zhang and Liao Xiaoxin, Stability of BDF methods for nonlinear Volterra integral equations with delay, Comput. Math. Appl., 43: 95-102, 2002. (SCI) [56] Chengjian Zhang, Shuzi Zhou and Xiaoxin Liao, D-convergence and GDN- stability of Runge-Kutta methods, Appl. Numer. Math.,37: 161- 170, 2001. (SCI) [57] Chengjian Zhang and Shoufu Li, Dissipativity and exponential asymp- totic stability ofthe solutions for nonlinear neutral functional- differential equations, Appl. Math. Comput., 119: 109- 115, 2001. (SCI) [58] Chengjian Zhang and Xiaoxin Liao, Asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations, Acta Math. Appl. Sin.,17: 240-246, 2001. [59]Chengjian Zhang and Hongbing Yu,A delay differential equations solver based on the parallel Adams methods, Comm. Nonlin. Sci. Num. Sim., 6: 28-34, 2001. [60] Chengjian Zhang and Xiaoxin Liao, Nonlinear stability of (ρ,σ)- methods for stiff delay-differential-algebraic systems, Control. Theory Appl., 18: 827-832, 2001. [61] ChengjianZhang and Xiaoxin Liao, D-convergence and stability of linear multistep methods for nonlinear DDEs, J. Comput. Math.,18: 199-206, 2000. (SCI) [62] Chengjian Zhang and Shuzi Zhou, Stability analysis of LMM for systems of neutral multidelay-differential equations, Comput. Math. Appl., 38: 113-117, 1999. (SCI) [63] Chengjian Zhang and Shuzi Zhou, The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differen tial equations, Sci. China (Ser. A), 41: 1151-1157, 1998. (SCI) [64] Chengjian Zhang and Shuzi Zhou, Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations, J. Comput. Appl. Math., 85: 225-237, 1997. (SCI) [65] Chengjian Zhang,The nonlinear stability of a class of multistageone-step multiderivativemethods, Chinese J. Numer. Math. Appl., 18:56-64, 1996.中文期刊主要论著 [1] 覃婷婷,张诚坚,中立型离散-分布式延迟系统的Rosenbrock数值仿真方法,系统仿真学报, 2011,23(5): 3906-3909. [2] 张诚坚,吕鹏,Banach 空间中的时滞积分微分方程数值方法及其牛顿迭代解的存在唯一性,数学物理学报, 2010, 30A(2): 456-464. [3] 肖飞雁,张诚坚,一类随机延迟微分代数系统的Euler-Maruyama方法,应用数学学报, 2010, 33(4): 590–600. [4] 牛原玲, 张诚坚, 非线性多滞量延迟微分方程的指数稳定性,应用数学学报, 2008, 31(4):654-662. [5] 丁建完; 张诚坚; 陈立平, 面向性能仿真的非连续微分代数模型的指标分析,计算机辅助设计与图形学学报, 2008, 20(5): 585-590. [6] 吴斯,程玉林,张诚坚,基于统计检验的模糊聚类神经网络,计算机科学与工程,2008,30(6):76-78. [7] 肖飞雁,张诚坚,一类变时滞微分代数方程单支方法的收敛性,数值计算与计算机应用, 2008,29(3):217-235. [8] 张诚坚,B-收敛结果的一个拓展,系统仿真学报, 2007,19(17): 3906-3909. [9] 张诚坚, 何耀耀,刚性多滞量积分微分方程的BDF方法,数值计算与计算机应用, 2007,28(2):124-132. [10] 张诚坚, 金杰, 刚性多滞量积分微分方程的Runge-Kutta方法,计算数学, 2007,29(4): 391-402. [11] 黄枝姣,张诚坚,数值求解NDDE系统的单支方法的非线性稳定性,数学物理学报, 2002, 22(3): 421-426. [12] 张诚坚,廖晓昕, 求解多延迟微分方程的Runge-Kutta方法的收缩性,数学物理学报, 2001, 21(2): 252-258. [13] 张诚坚,廖晓昕,周叔子,变系数MDDEs系统的数值稳定性,计算数学, 2000,22(4):409-416. [14] 张诚坚,甘四清,多滞量线性微分方程系统的数值稳定性分析, 高校计算数学学报,2000, 22(2): 111-116. [15] 甘四清,张诚坚,关于时滞微分方程初值问题一类并行算法,数值计算与计算机应用,1999, 20(4): 249-254. [16] 程纬,曹定华,张诚坚,基于C++语言的矩阵与矢量模板类,计算机工程与应用,1999,35(11): 75-77. [17] 张诚坚,周叔子,中立型多滞量微分方程系统理论解与数值解的渐近稳定性,中国科学, 1998,28(8):713-720. [18] 张诚坚,多级单步多导数方法的(K,α,β)-代数稳定性, 系统科学与数学,1998,18(1):120-124. [19] 张诚坚,一类多级单步多导数方法的非线性稳定性,计算数学,1996, 18(1):46-53. [20] 张诚坚,多导数Runge-Kutta 方法的(θ,α,β)-代数稳定性, 高校计算数学学报,1996,18(4):337-347. [21] 张诚坚,含高阶导数的Runge-Kutta 方法的稳定性准则,高校计算数学学报,1994,16(3):225-233. [22] 张诚坚,覃婷婷,《科学计算引论》,科学出版社, 2011. [23] 张诚坚, 何南忠,《计算方法》,高等教育出版社, 20008.
其它Other