删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中山大学数学学院导师教师师资介绍简介-洪柳

本站小编 Free考研考试/2021-05-20

教育经历:
09/2004-06/2009 清华大学周培源应用数学研究中心,理学博士
09/2000-06/2004?北京大学计算机科学与技术系,理学学士
09/2000-06/2004 北京大学数学系,?数学与应用数学第二学位
?
工作经历:
08/2020-至今?中山大学数学学院, 副教授
07/2015-07/2016 英国剑桥大学化学系, 访问****
12/2012-07/2020?清华大学周培源应用数学研究中心, 副研究员
07/2011-12/2012 清华大学周培源应用数学研究中心,?助理研究员
09/2009-09/2010 美国密歇根大学安娜堡分校计算医学与生物信息学中心,?访问****
07/2009-06/2011 清华大学生物系,?博士后
?
科研项目:
01/2019-12/2022: 国家自然科学基金---**. 针对蛋白质聚集的抑制剂调控机制的动力学研究 (课题负责人),54万.
01/2017-12/2020: 国家自然科学基金---**. 基于液晶理论的生物形态学建模和模拟 (主要参与人),48万.
09/2015-09/2018: 清华大学自主科研项目---. 非平衡热力学数学基础及应用 (课题负责人),60万.
01/2013-12/2016: 国家自然科学基金---**. 造血系统动力学分析与控制策略研究 (主要参与人),78万.
01/2013-12/2015: 国家自然科学基金---**. 蛋白质淀粉样纤维形成动力学的建模、分析和预测 (课题负责人),24万.
07/2013-07/2015: 清华大学自主科研项目---. 复杂流体的数学建模、分析和计算 (主要参与人),52万.
?
发表论文:
机器学习数学理论及应用:
W.Y. Yang#, L.R. Peng#, Y. Zhu, L. Hong*. (2020) When machine learning meets multiscale modeling in chemical reactions. J. Chem. Phys. 153(9): 094117. (封面文章,个人推荐)
W.Y. Yang, P.Z. Tan, X.J. Fu, L. Hong*. (2019) Prediction of amyloid aggregation rates by machine learning and feature selection. J. Chem. Phys. 151(8): 084106.
?
非平衡热力学数学理论及应用:
(1)热力学数学理论
L. Hong, H. Qian*. (2020) The statistical foundation of entropy in extended irreversible thermodynamics. J. Phys. A: Stat. Mech. Appl. 53: 425202. (个人推荐)
L. Hong, H. Qian*, L.F. Thompson. (2020) Representations and divergences in the space of probability measures and stochastic thermodynamics. J. Comp. Appl. Math. 376: 112842. (个人推荐)
L.P. Rong, H. Qian*, L. Hong*. (2020) Thermodynamics of Markov processes with non-extensive entropy and free energy. Phys. Rev. E 101(2): 022114.
L.R. Peng, Y. Zhu, L. Hong* (2018) Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations. Phys. Rev. E. 97(6): 062123.
L.R. Peng, Y. Zhu, L. Hong* (2018) The Markov process admits a consistent steady-state thermodynamic formalism. J. Math. Phys. 59(1): 013302.
L. Hong, J. Chen, Y. Zhu, W.A. Yong* (2016) Novel dissipative properties of the master equation. J. Math. Phys. 57(10): 103303.
J.T. Huang, W.A. Yong, L. Hong* (2016) Generalization of the Kullback-Leibler divergence in the Tsallis statistics. J. Math. Anal. Appl. 436(1): 501-512.
(2)复杂流体数学建模
L.P. Rong, Y.C. Hu, L. Hong*. (2019) Conservation-Dissipation Formalism for soft matter physics: I. Augmentation to Doi's variational approach. Euro. Phys.J. E. 42(6): 73.
L.P. Rong, Y.C. Hu, L. Hong*. (2019) Conservation-Dissipation Formalism for soft matter physics: II. Application to non-isothermal nematic liquid crystals. Euro. Phys. J. E. 42(6): 74.
Y.C. Hu*, L. Hong, W.H. Deng. (2018) Phase transition dynamics and stochastic resonance in topologically confined nematic liquid crystals. Phys. Rev. E. 98(3): 032706.
M. Grmela*, L. Hong, D. Jou, G. Lebon, M. Pavelka (2017) Hamiltonian and Godunov structures of the Grad hierarchy. Phys. Rev. E. 95(3): 033121.
L. Hong*, Z.B. Yang, Y. Zhu, W.A. Yong (2015) A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies. J. Non-Equil. Therm. 40(4): 247-256.
Y. Zhu, L. Hong, Z.B. Yang, W.A. Yong* (2015) Conservation-dissipation formalism of irreversible thermodynamics. J. Non-Equil. Therm., 40(2): 67-74. (个人推荐)
L. Hong, C.Y. Wang* (2009) Annular axisymmetric stagnation ow on a moving cylinder. Int. J. Eng. Sci., 47(1): 141-152.
C.Y. Wang*, L. Hong (2006) Similarity solutions of the Navier-Stokes equations. Adv. Mech., 36(1): 31-35.
?
生化反应动力学理论:
(1)蛋白质聚集及抑制
L. Hong*, C.F. Lee*, Y.J. Huang (2017) Statistical mechanics and kinetics of amyloid fibrillation. Chapter 4, Page 113-186. in Biophysics and Biochemistry of Protein Aggregation, edited by J.M. Yuan & H.X. Zhou, World Scientific Press. (综述)
Q.Q. Yao, L. Hong, S. Wu*, S. Perrett*. (2020) Distinct microscopic mechanisms for the accelerated aggregation of pathogenic Tau mutants revealed by kinetic analysis. Phys. Chem. Chem. Phys. 22(14): 7241-7249.
G. Li#, W.Y. Yang#, W.H. Li, Y.Y. Luo, Y.J. Lim, Y. Li, A. Paul, D. Segal, L. Hong*, Y.M. Li* (2020) Rational design of a cocktail of inhibitors against Aβ aggregation. Chem. Eur. J. 26(16): 3499-3503. (热点文章)
Y.J. Lim, W.H. Zhou, G. Li, Z.W. Hu, L. Hong*, X.F. Yu*, Y.M. Li*. (2019) Black phosphorus nanomaterials regulate the aggregation of amyloid-β. ChemNanoMat. 5(5): 606-611.
J.C. Sang, G. Meisl, A.M. Thackray, L. Hong, et al. (2018) Direct observation of murine prion protein replication in vitro. J. Am. Chem. Soc. 140(44): 14789-14798.
G. Li, W.Y. Yang, Y.F. Zhao, Y.X. Chen, L. Hong*, Y.M. Li*. (2018) Differential modulation of the aggregation of N-terminal truncated Aβ using Cucurbiturils. Chem. Eur. J. 24(51): 13647-13653.
F. Kundel, L. Hong, et al. (2018) Measurement of Tau filament fragmentation provides insights into prion-like spreading. ACS Chem. Neurosci. 9(6): 1276-1282.
K. Kamgarparsi, L. Hong, A. Naito, C.L. Brooks III, A. Ramamoorthy* (2017) Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time. J. Biol. Chem., 292(36): 14963-14976.
M. Iljina, L. Hong, et al. (2017) Nanobodies raised against monomeric α-synuclein inhibit fibril formation and destabilize toxic oligomeric species. BMC Biol., 15(1): 57.
L. Hong*, Y.J. Huang, W.A. Yong (2015) A kinetic model for cell damage caused by oligomer formation. Biophys. J., 109(7): 1338-1346.
L. Hong*, W.A. Yong (2013) Simple moment-closure model for the self-assembly of breakable amyloid filaments. Biophys. J., 104(3): 533-540. (个人推荐)
P.Z. Tan, L. Hong* (2013) Modeling fibril fragmentation in real-time. J. Chem. Phys., 139: 084904.
X.H. Qi#, L. Hong#, Y. Zhang* (2012) A variational model for oligomer-formation process of GNNQQNY peptide from yeast prion protein Sup35. Biophys. J., 102(3): 597-605.
L. Hong, X.H. Qi, Y. Zhang* (2012) Dissecting the kinetic process of amyloid fiber formation through asymptotic analysis. J. Phys. Chem. B, 116(23): 6611-6617.
L. Hong, X.H. Qi, Y. Zhang* (2011) A lattice-gas model for amyloid fibril aggregation. Europhys. Lett., 94, 68006.
(2)蛋白质结构及动力学
S. Wu#, L. Hong#, Y.Q. Wang#, Y.J. Qiong, J. Yang, J. Yang, H. Zhang, S. Perrett*. (2020) Kinetics of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function. Proc. Natl. Acad. Sci. U.S.A. 117(14): 7814-7823. (个人·推荐)
Y.W. Zhang, E.V. Yates, L. Hong, et al. (2018) On-chip measurements of protein unfolding from direct observations of micron-scale diffusion. Chem. Sci. 9(14): 3503-3507.
L.L. Kong, K.L. Saar, R. Jacquat, L. Hong et al. (2017) Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements. Interface Focus, 7(6): **.
L. Hong*, J.Z. Lei (2011) A general shape equation for local regular structure of biomolecular chains. 2011 IEEE Conf. Sys. Biol., 144-148.
L. Hong*, J.Z. Lei* (2009) Scaling law for the radius of gyration of proteins and its dependence on hydrophobicity. J. Poly. Sci. B, 47(2): 207-214. (个人推荐)
L. Hong (2008) A statistical mechanical model for antiparallel beta-sheet/coil equilibrium. J. Chem. Phys., 129(22): 225101.
L. Hong*, J.Z. Lei (2008) Statistical mechanical model for helix-sheet-coil transitions in homopolypeptides. Phys. Rev. E, 78(5): 051904.
?
其他:
P.P. Hu, L. Hong, Y. Zhu*. (2020) Linear and nonlinear electromagnetic waves in modulated honeycomb media. Stud. Appl. Math. 144: 18-45.
Y.J. Huang, L. Hong, W.A. Yong* (2015) Partial equilibrium approximations in apoptosis. II. The death-inducing signaling complex subsystem. Math. Biosci. 270: 126-134.




相关话题/中山大学 数学学院