删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华南师范大学环境研究院导师教师师资介绍简介-李晓敏

本站小编 Free考研考试/2021-05-23


教育背景
工作经历
开设课程
科研项目
学术成果
社会兼职
其他




李晓敏
博士/教授 环境研究院
研究方向: 环境地球化学、环境生物学、土壤污染与修复
xiaomin.li@m.scnu.edu.cn




教育背景
2004.09 – 2010.03,中国科学院广州地球化学研究所,环境科学,理学博士
2000.09 – 2004.07,中国农业大学,生物工程,工学学士


工作经历
自2010年获博士学位以来,先后在香港浸会大学(生物系)、华南农业大学(资源环境学院)、澳大利亚新南威尔士大学(土木与环境工程系、生物技术与生物分子系)、广东省生态环境技术研究所从事博士后/高级研究人员工作。
2018年至今,华南师范大学,教授。


开设课程
1. 本科生课程:《环境微生物学》《土壤环境学》等
2. 研究生课程:《分子生物学与组学技术》《高等环境化学与风险评估》《信息检索、管理与论文写作》等


科研项目
7. 广东省重点领域研发计划项目课题(2019B),重金属污染农田安全利用关键技术及应用。
6. 国家自然科学基金委,面上项目(**),淹水稻田土壤亚铁-硝酸盐体系砷固定机制及功能微生物研究。
5.国家自然科学基金委,面上项目(**),外膜细胞色素与分泌物介导的微生物-矿物界面电子传递机制。
4. 国家自然科学基金委,青年基金(**),腐殖质促进土壤有机氯还原转化的关键微生物群落及其机制。
3. 广东省科学技术厅,广东省自然科学****基金(2017),铁循环驱动污染物转化的微生物-化学耦合机制。
2. 广东省科学技术厅,“广东省特支计划”科技创新青年拔尖人才(2017)。
1. 澳大利亚研究理事会,探索青年****项目(2015),Extracellular electron transfer at the microbe-mineral interface via outer membrane cytochromes/exudates: Implications to iron transformation。


学术成果
一、学术论文(Journal Publications
[64]. Qiao JT, Li XM*, Li FB, Zhong SX, Chen MJ. 2021. Effect of riboflavin on active bacterial communities and arsenic-respiring gene and bacteria in arsenic-contaminated paddy soil. Geoderma 382, 114706. https://www.sciencedirect.com/science/article/pii/S00**916
[63]. Pan DD, Liu CP, Yi JC, Li XM*, Li FB. 2021. Different effects of foliar application of silica sol on arsenic translocation in rice under low and high arsenite stress. Journal of Environmental Sciences 105, 22–32. https://www.sciencedirect.com/science/article/pii/S05301
[62].Zhang XF, Liu TX, Li FB*, Li XM, Du YH, Yu HY, Wang XQ, Liu CP, Feng M, Liao B. 2021. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. Journal of Environmental Sciences 100, 90–98.
https://www.sciencedirect.com/science/article/pii/S03120
[61].Li XM, Qiao JT, Li S, Haggblom MM, Li FB*, Hu M.2020. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil.Environmental Science & Technology54 (4), 2172–2181. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04308
[60].Pan DD, Yi JC, Li FB, Li XM*, Liu CP, Wu WJ, Tao TT. 2020. Dynamics of gene expression associated with arsenic uptake and transport in rice during the whole growth period. BMC Plant Biology 20 (1), 133. https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-020-02343-1
[59].Liu TX, Wang Y, Liu CX, Li XM, Cheng K, Wu YD, Fang LP, Li FB*, Liu CS. 2020. Conduction band of hematite can mediate cytochrome reduction by Fe(II) under dark and anoxic conditions. Environmental Science & Technology 54 (8), 4810–4819. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b06141
[58].Shi ZQ*, Hu SW, Lin JY, Liu TX, Li XM, Li FB. 2020. Quantifying microbially mediated kinetics of ferrihydrite transformation and arsenic reduction: Role of arsenate-reducing gene expression pattern. Environmental Science & Technology 54 (11), 6621–6631. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b07137
[57]. Liu TX, Luo XB, Wu YD, Reinfelder JR, Yuan X, Li XM, Chen DD, Li FB*. 2020. Extracellular electron shuttling mediated by soluble c-type cytochromes produced by Shewanella oneidensis MR-1. Environmental Science & Technology 54 (17), 10577–10587. https://pubs.acs.org/doi/10.1021/acs.est.9b06868
[56].李芳柏*, 徐仁扣, 谭文峰, 周顺桂, 刘同旭, 石振清, 方利平, 刘承帅, 刘芳华, 李晓敏, 冯雄汉, 吴云当. 2020. 新时代土壤化学前沿进展与展望. 土壤学报 57 (5), 1088−1104. http://pedologica.issas.ac.cn/trxb/ch/reader/view_abstract.aspx?file_no=trxb3&flag=1
[55].Qiao JT,Li XM(Co-first author), Li FB*, Liu TX, Young LY, Huang WL, Sun K, Tong H, Hu M.2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil.Environmental Science & Technology53 (9), 5034–5042. https://pubs.acs.org/doi/abs/10.1021/acs.est.8b06333
[54].Li XM, Mou S, Chen YT, Liu TX, Dong J, Li FB*.2019. Microaerobic Fe(II) oxidation coupled to carbon assimilation processes driven by microbes from paddy soil.Science China-Earth Sciences62 (11), 1719–1729. https://link.springer.com/article/10.1007/s11430-018-9329-3
[53]. Li XM, Liu L, Wu YD, Liu TX*.2019.Determination of the redox potentials of solution and solid surface of Fe(II) associated with iron oxyhydroxides.ACS Earth and Space Chemistry3 (5), 711–717. https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.9b00001
[52].Wang Y, Yuan X,Li XM, Li FB, Liu TX*.2019.Ligand mediated reduction of c-type cytochromes by Fe(II): Kinetic and mechanistic insights.Chemical Geology513, 23−31. https://www.sciencedirect.com/science/article/pii/S1044
[51].Liu TX, Chen DD,Li XM, Li FB*.2019.Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions.FEMS Microbiology Ecology95 (4), fiz030. https://academic.oup.com/femsec/article/95/4/fiz030/**
[50].Liu TX, Chen DD, Luo XB,Li XM, Li FB*.2019. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions.Geochimica et Cosmochimica Acta256, 97–115. https://www.sciencedirect.com/science/article/pii/S00**740
[49].Luo XB, Wu YD, Liu TX*, Li FB,Li XM, Chen DD, Wang Y.2019. Quantifying redox dynamics ofc-type cytochromes in a living cell suspension of dissimilatory metal-reducing bacteria.Analytical Sciences35 (3), 315−321. https://www.jstage.jst.go.jp/article/analsci/35/3/35_18P394/_article/-char/ja
[48].Qiao JT,Li XM (Co-first author), Hu M, Li FB*, Young LY, Sun WM, Huang WL, Cui JH.2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil.Environmental Science & Technology52 (1), 61−70. https://pubs.acs.org/doi/abs/10.1021/acs.est.7b03771
[47].Li S,Li XM*, Li FB.2018. Fe(II) oxidation and nitrate reduction by a denitrifying bacterium,Pseudomonas stutzeriLS-2, isolated from paddy soil.Journal of Soils and Sediments18, 1668–1678. https://link.springer.com/article/10.1007/s11368-017-1883-1
[46].Qiao JT,Li XM, Li FB*.2018. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.Journal of Hazardous Materials344, 958–967. https://www.sciencedirect.com/science/article/pii/S8476
[45].Xiao W, Jones AM,Li XM, Collins RN, Waite TD*.2018. Effect ofShewanella oneidensison the kinetics of Fe(II)-catalyzed transformation of ferrihydrite to crystalline iron oxides.Environmental Science & Technology52 (1), 114–123. https://pubs.acs.org/doi/abs/10.1021/acs.est.7b05098
[44].Chen DD, Liu TX,Li XM, Li FB*, Luo XB, Wu YD, Wang Y.2018. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation byPseudogulbenkianiasp. strain 2002.Chemical Geology476, 59–69. https://www.sciencedirect.com/science/article/pii/S6253
[43].Han R, Liu TX, Li FB,Li XM, Chen DD, Wu YD.2018. Dependence of secondary mineral formation on Fe(II) production from ferrihydrite reduction byShewanella oneidensisMR-1.ACS Earth and Space Chemistry2 (4), 399–409. https://pubs.acs.org/doi/abs/10.1021/acsearthspacechem.7b00132
[42].Han R,Li XM (Co-first author), Wu YD, Li FB, Liu TX*.2017.In situspectral kinetics of quinone reduction byc-type cytochromes in intactShewanella oneidensisMR-1 cells.Colloids and Surfaces A: Physicochemical and Engineering Aspects520, 505–513. https://www.sciencedirect.com/science/article/pii/S1565
[41].Chen YT,Li XM, Liu TX, Li FB*.2017. Microaerobic iron oxidation and carbon assimilation and associated microbial community in paddy soil.Acta Geochimica36 (3), 502–505. https://link.springer.com/article/10.1007/s11631-017-0219-6
[40].Liu TX, Wang Y,Li XM, Li FB*.2017. Redox dynamics and equilibria ofc-type cytochromes in the presence of Fe(II) under anoxic conditions: Insights into enzymatic iron oxidation.Chemical Geology468, 97–104. https://www.sciencedirect.com/science/article/pii/S4709
[39].Luo XB, Wu YD,Li XM, Chen DD, Wang Y, Li FB, Liu TX*.2017. Thein situspectral methods for examining redox status ofc-type cytochromes in metal-reducing/oxidizing bacteria.Acta Geochimica36 (3), 544–547. https://link.springer.com/article/10.1007/s11631-017-0232-9
[38].Liu TX, Wu YD, Li FB*,Li XM, Luo XB.2017. Rapid redox processes of c-type cytochromes in a living cell suspension ofShewanella oneidensisMR-1.ChemistrySelect2, 1008–1012. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.
[37].Li XM, Zhang W, Liu TX, Chen LX, Chen PC, Li FB*.2016. Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil.Soil Biology & Biochemistry94, 70–79. https://www.sciencedirect.com/science/article/pii/S406X
[36].Liu TX,Li XM, Yuan X, Wang Y, Li FB*.2016. Enhanced visible-light photocatalytic activity of a TiO2 hydrosol assisted by H2O2: Surface complexation and kinetic modeling.Journal of Molecular Catalysis A: Chemical414, 122–129. https://www.sciencedirect.com/science/article/pii/S**00115
[35].Liu TX,Li XM, Li FB*, Han R, Wu YD, Yuan X, Wang Y.2016.In situspectral kinetics of Cr(VI) reduction byc-type cytochromes in a suspension of livingShewanella putrefaciens200.Scientific Reports6, 29592. https://www.nature.com/articles/srep29592
[34].Beckmann S*, Welte C,Li XM, Oo YM, Kroeninger L, Heo Y, Zhang M, Ribeiro D, Lee M, Bhadbhade M, Marjo CE, Seidel J, Deppenmeier U, Manefield M*.2016. Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation.Energy & Environmental Science9, 644–655. https://pubs.rsc.org/en/content/articlehtml/2015/ee/c5ee03085d
[33].Han R, Li FB, Liu TX*,Li XM, Wu YD, Wang Y, Chen DD.2016. Effects of incubation conditions on Cr(VI) reduction by c-type cytochromes in intactShewanella oneidensisMR-1 cells.Frontiers in Microbiology7, 746. https://www.frontiersin.org/articles/10.3389/fmicb.2016.00746/full
[32].Li XM, Liu TX, Wang K, Waite TD*.2015. Light-induced extracellular electron transport by the marine raphidophyteChattonella marina.Environmental Science & Technology49, 1392–1399. https://pubs.acs.org/doi/abs/10.1021/es503511m
[31].Li XM, Lin Z, Luo CL, Bai J, Sun YT, Li YT*.2015. Enhanced microbial degradation of pentachlorophenol from soil in the presence of earthworms: Evidence of functional bacteria using DNA-stable isotope probing.Soil Biology & Biochemistry81, 168–177. https://www.sciencedirect.com/science/article/pii/S3976
[30].Li XM, Liu TX*, Liu L, Li FB*.2014. Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(III) reduction by two iron/humic reducing bacteria.RSC Advances4, 2284–2290. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra45458d#!divAbstract
[29].Liu TX,Li XM(Co-first author), Zhang W, Hu M, Li FB*.2014. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation byKlebsiella pneumoniaeL17.Journal of Colloid and Interface Science423, 25–32. https://www.sciencedirect.com/science/article/pii/S002**27
[28].Liu TX,Li XM, Waite TD*.2014. Depassivation of aged Fe0 by divalent cations: Correlation between contaminant degradation and surface complexation constants.Environmental Science & Technology48, 14564–14571. https://pubs.acs.org/doi/abs/10.1021/es503777a
[27].Zhang W,Li XM, Liu TX*, Li FB*, Shen WJ.2014. Competitive reduction of nitrate and iron oxides byShewanella putrefaciens200 under anoxic conditions.Colloids and Surfaces A: Physicochemical and Engineering Aspects445, 97–104. https://www.sciencedirect.com/science/article/pii/S0624
[26].Liu TX*,Li XM, Li FB, Tao L, Liu H*.2014. Effects of Al content and synthesis temperature on Al-substituted iron oxides: Crystal properties and Fe(III) bioaccessibility.Soil Science179 (10-11), 468–475. https://journals.lww.com/soilsci/Abstract/2014/10000/Effects_of_Al_Content_and_Synthesis_Temperature_on.4.aspx
[25].Wu YD, Liu TX*,Li XM, Li FB*.2014. Exogenous electron shuttle-mediated extracellular electron transfer ofShewanella putrefaciens200: Electrochemical parameters and thermodynamics.Environmental Science & Technology48, 9306−9314. https://pubs.acs.org/doi/abs/10.1021/es**
[24].Liu TX, Zhang W,Li XM, Li FB*, Shen WJ.2014. Kinetics of competitive reduction of nitrate and iron oxides byAeromonas hydrophilaHS01.Soil Science Society of America Journal78, 1903−1912. https://acsess.onlinelibrary.wiley.com/doi/full/10.2136/sssaj2014.04.0164
[23].Chen MJ, Liu CS,Li XM, Huang WL, Li FB*.2014. Iron reduction coupled to reductive dechlorination in red soil: a review.Soil Science179 (10-11), 457–467. https://journals.lww.com/soilsci/Abstract/2014/10000/Iron_Reduction_Coupled_to_Reductive_Dechlorination.3.aspx
[22].Li XM, Liu L, Liu TX*, Yuan T, Zhang W, Li FB*, Zhou SG, Li YT.2013. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation byKlebsiella pneumoniaeL17.Chemosphere92, 218–224. https://www.sciencedirect.com/science/article/pii/S2531
[21].Li XM, Cheng KY, Wong JWC*.2013. Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH.Bioresource Technology149, 452–458. https://www.sciencedirect.com/science/article/pii/S4612
[20].Li XM, Cheng KY, Selvam A, Wong JWC*.2013. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula.Process Biochemistry48, 283–288. https://www.sciencedirect.com/science/article/pii/S**03704
[19].Liu TX,Li XM, Waite TD*.2013. Depassivation of aged Fe0 by ferrous ions: Implications to contaminant degradation.Environmental Science & Technology47, 13712–13720. https://pubs.acs.org/doi/abs/10.1021/es403709v
[18].Liu TX,Li XM, Waite TD*.2013. Depassivation of aged Fe0 by inorganic salts: Implications to contaminant degradation in seawater.Environmental Science & Technology47, 7350–7356. https://pubs.acs.org/doi/abs/10.1021/es400362w
[17].Li XM, Liu TX, Zhang NM, Ren G, Li FB*, Li YT.2012. Effect of Cr(VI) on Fe(III) reduction in three paddy soils from the Hani terrace field at high altitude.Applied Clay Science64, 53–60. https://www.sciencedirect.com/science/article/pii/S0**0634
[16].Li XM, Liu TX*, Li FB*, Zhang W, Zhou SG, Li YT.2012. Reduction of structural Fe(III) in oxyhydroxides byShewanella decolorationisS12 and characterization of the surface properties of iron minerals.Journal of Soils and Sediments12, 217–227. https://link.springer.com/article/10.1007/s11368-011-0433-5
[15].Lin Z,Li XM, Li YT*, Huang DY, Dong J, Li FB*.2012. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT.Journal of Environmental Monitoring14, 1551–1558. https://pubs.rsc.org/no/content/articlelanding/2012/em/c2em30160a/unauth#!divAbstract
[14.Zhang W,Li XM, Liu TX*, Li FB*.2012. Enhanced nitrate reduction and current generation byBacillussp. in the presence of iron oxides.Journal of Soils and Sediments12, 354–365. https://link.springer.com/article/10.1007%2Fs11368-011-0460-2
[13].Cao F, Liu TX*, Wu CY, Li FB*,Li XM, Yu HY, Tong H, Chen MJ.2012. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteriaAeromonas hydrophilaHS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS).Journal of Agricultural and Food Chemistry60, 11238–11244. https://pubs.acs.org/doi/abs/10.1021/jf303610w
[12].Liu TX,Li XM, Li FB*, Zhang W, Chen MJ, Zhou SG.2011. Reduction of iron oxides byKlebsiella pneumoniaeL17: Kinetics and surface properties.Colloids and Surfaces A-Physicochemical and Engineering Aspects379, 143–150. https://www.sciencedirect.com/science/article/pii/S6990
[11].Li FB*,Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH.2010. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.Environmental Pollution158, 1733–1740. https://www.sciencedirect.com/science/article/pii/S5806
[10].Wu CY, Zhuang L, Zhou SG*, Li FB*,Li XM.2010. Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacteriumComamonas KoreensisCY01.FEMS Microbiology Ecology71, 106–113. https://academic.oup.com/femsec/article/71/1/106/557246
[09].Cao F, Li FB*, Liu TX, Huang DY, Wu CY, Feng CH,Li XM.2010. Effect ofAeromonas hydrophilaon reductive dechlorination of DDTs by zero-valent iron.Journal of Agricultural and Food Chemistry58, 12366–12372. https://pubs.acs.org/doi/abs/10.1021/jf102902f
[08].Li XM, Zhou SG, Li FB*, Wu CY, Zhuang L, Xu W, Liu L.2009. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolatedKlebsiella pneumoniaestrain L17.Journal of Applied Microbiology106, 130–139. https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2672.2008.03985.x
[07].Li XM, Li YT, Li FB*, Zhou SG*, Feng CH, Liu TX.2009. Interactively interfacial reaction of iron-reducing bacterium and goethite for reductive dechlorination of chlorinated organic compounds.Chinese Science Bulletin54, 2800–2804. https://link.springer.com/article/10.1007/s11434-009-0475-x
[06].Wang XG, Liu CS,Li XM, Li FB*, Zhou SG.2008. Photodegradation of 2-mercaptobenzothiazole in the γ-Fe2O3/oxalate suspension under UVA light irradiation.Journal of Hazardous Materials153, 426–433. https://www.sciencedirect.com/science/article/pii/S2460
[05].Li FB, Li XZ*,Li XM, Liu TX, Dong J.2007. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution.Journal of Colloid and Interface Science311, 481–490. https://www.sciencedirect.com/science/article/pii/S002**21
[04].Li FB, Li XZ*, Liu CS,Li XM, Liu TX.2007. Effect of oxalate on photodegradation of bisphenol A at the Interface of different iron oxides.Industrial & Engineering Chemistry Research46, 781–787. https://pubs.acs.org/doi/abs/10.1021/ie**
[03].Liu CS, Li FB*,Li XM, Zhang G, Kuang YQ.2006. The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole.Journal of Molecular Catalysis A-Chemical252, 40–48. https://www.sciencedirect.com/science/article/pii/S**0570X
[02].Lei J, Liu CS, Li FB*,Li XM, Zhou SG, Liu TX, Gu MH, Wu QT.2006. Photodegradation of orange I in the heterogeneous iron oxide-oxalate complex system under UVA irradiation.Journal of Hazardous Materials137, 1016–1024. https://www.sciencedirect.com/science/article/pii/S272X
[01].Dong J, Li FB*, Lan CY, Liu CS,Li XM, Luan TG.2006. Dependence of bisphenol A photodegradation on the initial concentration of oxalate in the lepidocrocite-oxalate complex system.Journal of Environmental Sciences-China18, 777–782. http://d.wanfangdata.com.cn/periodical/jes-e
二、专著章节(Book chapters
[03].Cheema S, Zhang M, Labine-Romain M, Lal B, Lavania M, Lee M, Li XM, Lauro FM, Beckmann S, Manefield M. Neutral Red: The Synthetic Phenazine Full of Electrochemical Surprises. In: Wandelt K. (Editor-in-Chiefs) Encyclopedia of Interfacial Chemistry - Surface Science and Electrochemistry (1st Edition). Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018. pp 382–391. Elsevier (Print ISBN: 97, online ISBN: 43, DOI: 10.1016/B978-0-12-409547-2.14291-X)
[02].Li XM, Liu L, Liu TX, Yuan T, Zhang W, Li FB, Zhou SG, Li YT. Effects of synthetic quinones as electron shuttles on geothite reduction and current generation by Klebsiella pneumoniae L17. In: Xu JM, Wu JJ, Xu Y (eds). Functions of Natural Organic Matter in Changing Environment. Part I, 2013. pp 25–29. Springer Netherlands. (Print ISBN: 978-94-007-5633-5, Online ISBN: 978-94-007-5634-2, DOI: 10.1007/978-94-007-5634-2_5)
[01].Li FB, Zhou SG, Li XM, Wu CY, Tao L. Microbial and abiotic interactions between transformation of reducible pollutants and Fe(II)/(III) cycles. In: Xu JM, Huang PM (eds). Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone. Session 3, 2010. pp 190–192. Springer Berlin Heidelberg. (Print ISBN: 978-3-642-05296-5, Online ISBN: 978-3-642-05297-2, DOI: 10.1007/978-3-642-05297-2_57)
三、科技奖项(Awards
[04].2019年,广东省科学技术奖(自然科学奖)“矿物-胞外呼吸微生物间电子传递机制及其环境效应”,一等奖,排名第八。
[03].2017年,“广东省特支计划”科技创新青年拔尖人才。
[02].2014年,澳大利亚研究理事会“探索青年****”(Discovery Early Career Researcher Award,DECRA)。
[01].2005年,广东省科学技术奖(自然科学奖)“二氧化钛光催化环境技术的应用基础研究”,一等奖,排名第十三。


社会兼职



其他



EN


Copyright © 2021 South China Normal University. All Rights Reserved
华南师范大学 版权所有

相关话题/华南师范大学 环境研究院