删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

厦门大学化学化工学院导师教师师资介绍简介-PavloO.Dral

本站小编 Free考研考试/2021-05-08


电话:(0592)** (实验室)
电子邮箱: dral@xmu.edu.cn
实验室:大学路182号曾呈奎楼B307室
课题组网页: http://dr-dral.com/

个人简历:

副教授(厦门大学化学化工学院, 2019/10至今)
博士后研究员(马克斯-普朗克煤炭研究所, 2013-11 至 2019-09)
博士(埃尔朗根-纽伦堡大学,2010-04 至 2013-10)
硕士(乌克兰国立技术大学,2008-09 至 2010-06)
硕士(埃尔朗根-纽伦堡大学,2008-10 至 2010-04)
学士(乌克兰国立技术大学,2004-09 至 2008-06)



研究兴趣:
Development of efficient machine learning-based methods for atomistic simulations using our package MLatom.Development of the most accurate and consistent NDDO-based semiempirical quantum chemical methods.Development of hybrid machine learning/quantum chemical approaches.Application of a wide range of quantum chemical methods to real-world physicochemical problems.
近期主要代表论著:

1. Tobias A. Schaub, Theresa Mekelburg, Pavlo O. Dral, Matthias Miehlich, Frank Hampel, Karsten Meyer, Milan Kivala*, A Spherically Shielded Triphenylamine and Its Persistent Radical Cation. Chem. Eur. J. 2020, Accepted Article. DOI: 10.1002/chem..
2. Pavlo O. Dral*, MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning. J. Comput. Chem. 2019, 40, 2339–2347. DOI: 10.1002/jcc.26004.
3. Pavlo O. Dral*, Xin Wu, Walter Thiel*, Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. J. Chem. Theory Comput. 2019, 15, 1743–1760. DOI: 10.1021/acs.jctc.8b01265.
4. Xin Wu, Pavlo O. Dral, Axel Koslowski, Walter Thiel*, Big Data Analysis of Ab Initio Molecular Integrals in the Neglect of Diatomic Differential Overlap Approximation. J. Comput. Chem. 2019, 40, 638–649. DOI: 10.1002/jcc.25748.
5. Wen-Kai Chen, Xiang-Yang Liu, Weihai Fang, Pavlo O. Dral, Ganglong Cui*, Deep Learning for Nonadiabatic Excited-State Dynamics. J. Phys. Chem. Lett. 2018, 9, 6702–6708. DOI: 10.1021/acs.jpclett.8b03026.
6. Pavlo O. Dral*, Mario Barbatti*, Walter Thiel*, Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. DOI: 10.1021/acs.jpclett.8b02469.
7. Pavlo O. Dral*, Alec Owens, Sergei N. Yurchenko, Walter Thiel, Structure-Based Sampling and Self-Correcting Machine Learning for Accurate Calculations of Potential Energy Surfaces and Vibrational Levels. J. Chem. Phys. 2017, 146, 244108. DOI: 10.1063/1.**.
8. Pavlo O. Dral*, Timothy Clark*, On the Feasibility of Reactions through the Fullerene Wall: A Theoretical Study of NHx@C60. Phys. Chem. Chem. Phys. 2017, 19, 17199–17209. DOI: 10.1039/C7CP02865B.
9. Pavlo O. Dral, Xin Wu, Lasse Sp?rkel, Axel Koslowski, Walter Thiel*, Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. J. Chem. Theory Comput. 2016, 12, 1097–1120. DOI: 10.1021/acs.jctc.5b01047.
10. Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, O. Anatole von Lilienfeld*, Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087–2096. DOI: 10.1021/acs.jctc.5b00099.
11. Pavlo O. Dral*, O. Anatole von Lilienfeld, Walter Thiel*, Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations. J. Chem. Theory Comput. 2015, 11, 2120–2125. DOI: 10.1021/acs.jctc.5b00141.
12. Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, O. Anatole von Lilienfeld*, Quantum Chemistry Structures and Properties of 134 Kilo Molecules. Sci. Data 2014, 1, 140022. DOI: 10.1038/sdata.2014.22.
13. Pavlo O. Dral*, The Unrestricted Local Properties: Application in Nanoelectronics and for Predicting Radicals Reactivity. J. Mol. Model. 2014, 20, 2134. DOI: 10.1007/s00894-014-2134-78.
14. Michael Salinas, Christof M. J?ger, Atefeh Y. Amin, Pavlo O. Dral, Timo Meyer-Friedrichsen, Andreas Hirsch, Timothy Clark, Marcus Halik*, The Relationship between Threshold Voltage and Dipolar Character of Self-assembled Monolayers in Organic Thin-Film Transistors. J. Am. Chem. Soc. 2012, 134, 12648–12652. DOI: 10.1021/ja303807u.
15. Pavlo O. Dral, Timothy Clark*, Semiempirical UNO–CAS and UNO–CI: Method and Applications in Nanoelectronics. J. Phys. Chem. A 2011, 115, 11303–11312. DOI: 10.1021/jp204939x.




相关话题/厦门大学 化学化工学院