删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

福建师范大学数学与信息学院导师教师师资介绍简介-柯艺芬

本站小编 Free考研考试/2021-05-13

柯艺芬,女,汉族,1989年12月出生,福建龙海人,博士,硕士生导师。现任福建师范大学数学与信息学院教师,中国数学会计算数学分会理事,福建省分析数学及应用重点实验室骨干成员。
联系方式:
Email:keyifen@fjnu.edu.cn、keyifen2017@163.com
通讯地址:福建省福州市闽侯县福建师范大学旗山校区理工楼
教育经历:
2012.09--2017.06,福建师范大学,计算数学,理学博士
2008.09--2012.06,福建师范大学,数学与应用数学,理学学士
工作经历:
2019.07--至今,福建师范大学数学与信息学院,讲师,入选福建师范大学“青年英才计划”
2017.06--2019.05,中国科学院大学计算地球动力学重点实验室,博士后,入选
中国博士后创新人才支持计划
学术交流:
2018.04.01--06.30,南开大学陈省身数学研究所,访问
研究方向:
主要从事数值代数及其应用、最优化理论与算法等研究
科研项目:
1、国家自然科学基金青年面上项目,**,锥互补问题的高效模系数值算法及预处理技术研究,2020/01-2022/12,25万,在研,主持
2、国家自然科学基金联合基金项目,U**,大数据与地震数值预测探索,2019/01-2022/12,233万,在研,参与
3、国家重点研发计划,2018YFC**,多概率宽频带地震危险性分析方法研究,2018/12-2021/12,60/1596万,在研,子课题负责人
4、中国博士后科学基金面上项目,2017M620878,鞍点系统的高效数值算法及预处理技术研究,2017/11-2019/05,5万元,结题,主持
5、博士后创新人才支持计划,BX,地球发电机模型中鞍点问题的高效数值算法及预条件子研究,2017/06-2019/05,60万元,结题,主持
论文著作:
[1]马昌凤, 柯艺芬, 唐嘉, 陈宝国. 数值线性代数与算法(MATLAB 版) [M]. 北京: 国防工业出版社, 2017.06.
[2]马昌凤, 柯艺芬, 谢亚君. 最优化计算方法及其MATLAB程序实现 [M]. 北京: 国防工业出版社, 2015.06.
[3]Yi-Fen Ke. The new iteration algorithm for absolute value equation [J].Applied MathematicsLetters, 2020, 99: 105990.
[4]Yi-Fen Ke, Chang-Feng Ma, Huai Zhang. The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems [J]. Numerical Algorithms, 2018, 79: 1283-1303.
[5]Yi-Fen Ke, Chang-Feng Ma, Huai Zhang. The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems [J]. Computational and Applied Mathematics, 2018, 37: 6795-6820.
[6]Yi-Fen Ke, Chang-Feng Ma, Huai Zhang.Convergence analysis of ADMM for three-block separable quadratic programming problems with the linear constraint [J].East Asian Journal on Applied Mathematics, 2018, 8: 498-509.
[7]Yi-Fen Ke, Chang-Feng Ma. The parameterized preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations [J].Computational and Applied Mathematics, 2018, 37: 3385-3398.
[8]Yi-Fen Ke, Chang-Feng Ma. A low-order block preconditioner for saddle point linear systems [J].Computational and Applied Mathematics, 2018, 37: 1959-1970.
[9]Yi-FenKe, Chang-Feng Ma. Some preconditioners for elliptic PDE-constrained optimization problems [J].Computers and Mathematics with Applications, 2018, 75: 2795-2813.
[10]Yi-FenKe, Chang-Feng Ma, Zhi-Ru Ren.A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models [J].Frontiers of Mathematics in China, 2018,13(2): 313-340.
[11]Yi-FenKe, Chang-Feng Ma. A new relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations [J]. Computational and Applied Mathematics, 2018, 37: 515-524.
[12]Yi-FenKe, Chang-Feng Ma. Alternating direction method for a class of Sylvester matrix equations with linear matrix inequality constraint [J].Numerical Functional Analysis and Optimization, 2018, 39(3): 257-275.
[13]Yi-FenKe, Chang-Feng Ma. The unified frame of alternating direction method of multipliers for three classes of matrix equations arising in control theory [J].Asian Journal of Control, 2018, 20(1): 437-454.
[14]Yi-FenKe, Chang-Feng Ma. Alternating direction methods for solving a class of Sylvester-like matrix equations (AXB,CXD)=(G,H) [J].Linear & Multilinear Algebra, 2017, 65: 2268-2292.
[15]Yi-FenKe, Chang-Feng Ma. SOR-like iteration method for solving absolute value equations [J]. Applied Mathematics and Computation, 2017, 311: 195-202.
[16]Yi-FenKe, Chang-Feng Ma. An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations [J].Numerical Algorithms, 2017, 75: 1103-1121.
[17]Yi-FenKe, Chang-Feng Ma. The alternating direction method for solving the Sylvester-type matrix equation AXB+CX^TD=E [J].Journal of Computational Mathematics, 2017, 35(5): 620-641.
[18]Yi-FenKe, Chang-Feng Ma. The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models [J]. Applied Mathematics and Computation, 2017, 303: 146-164.
[19]Yi-FenKe, Chang-Feng Ma. An accelerated augmented Lagrangian method for linearly constrained convex programming with the rate of convergence O(1/k^2) [J].Applied Mathematics-A Journal of Chinese Universities Series B, 2017, 32(1): 117-126.
[20]Yi-FenKe, Chang-Feng Ma. An alternating direction method for nonnegative solutions of the matrix equation AX+YB=C [J].Computational and Applied Mathematics, 2017, 36: 359-365.
[21]柯艺芬, 马昌凤. 椭圆PDE--约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[22]Yi-FenKe, Chang-Feng Ma. A note on “A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations” [J]. Applied Numerical Mathematics,2016,108: 223-225.
[23]Yi-FenKe, Chang-Feng Ma. Spectrum analysis of a more general augmentation block preconditioner for generalized saddle point matrices [J].BIT Numerical Mathematics, 2016, 56: 489-500.
[24]Yi-FenKe, Chang-Feng Ma. A neural network for the generalized nonlinear complementarity problem over a polyhedral cone [J].Journal of the Australian Mathematical Society, 2015, 99(3): 364-379.
[25]Yi-FenKe, Chang-Feng Ma. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces [J]. Fixed Point Theory and Applications, 2015, 190: 1-21.
[26]Yi-FenKe,Chang-Feng Ma. Strong convergence theorem for a common fixed point of a finite family of strictly pseudo-contractive mappings and a strictly pseudononspreading mapping [J].Fixed Point Theory and Applications, 2015, 116: 1-23.
[27]Yi-FenKe, Chang-Feng Ma. Alternating direction method for generalized Sylvester matrix equation AXB + CYD=E [J].Applied Mathematics and Computation, 2015, 260: 106-125.
[28]Yi-FenKe,Chang-Feng Ma. A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation [J].Computers and Mathematics with Applications, 2014, 68: 1409-1420.
[29]Yi-FenKe, Chang-Feng Ma. On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems [J].Applied Mathematics and Computation, 2014, 243: 413-418.
[30]Ya-Jun Xie,Yi-FenKe, Chang-Feng Ma. The modified accelerated Bregman method for regularized basis pursuit problem [J].Journal of Inequalities and Applications, 2014, 130: 1-17.
[31]Yi-Fen Ke, Chang-Feng Ma. The generalized bisymmetric (bi-skew-symmetric) solutions of a class of matrix equations and its least squares problem [J].Abstract and Applied Analysis, 2014, Article ID 239465, 10 pages.
[32]Yi-Fen Ke, Chang-Feng Ma. Iterative algorithm of common solutions for a constrained convex minimization problem, a quasi-variational inclusion problem and the fixed point problem of a strictly pseudo-contractive mapping [J].Fixed Point Theory and Applications, 2014, 54: 1-15.
[33]Yi-Fen Ke, Chang-Feng Ma. The convergence analysis of the projection methods for a system of generalized relaxed cocoercive variational inequalities in Hilbert spaces [J].Fixed Point Theory and Applications, 2013, 189: 1-11.
[34]Yi-Fen Ke, Chang-Feng Ma. A new relaxed extragradient-like algorithm for approaching common solutions of generalized mixed equilibrium problems, a more general system of variational inequalities and a fixed point problem [J].Fixed Point Theory and Applications, 2013, 126: 1-21.
相关话题/福建师范大学 数学