摘要关键短语生成是一个能从长文档或者文献中捕获中心思想的实用任务。先前的神经关键短语生成方法基本只注重词级别的信息而忽略文档结构。该文提出了一个句级选择网络(sentence selective network,SenSeNet)用于关键短语生成。该模型重点关注文档的句子结构信息,通过学习句子隐式表示来判断其是否有可能生成关键短语,然后根据判断结果引入对应归纳偏置来辅助解码器生成关键短语。该文使用直通估计量(straight-through estimator)来端到端地训练模型。为了提高句级选择网络性能,该文还提出了一个任务强相关的弱监督信息。实验表明,模型成功地捕获了文档信息,并合理选择了相对较重要的句子,而且模型也更倾向于从这些重要句子中生成关键短语。该文将模型引入到绝大多数序列到序列模型中,在五个数据集中的两个评价指标下,均有显著的性能提升。
PDF全文下载地址:
http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3177
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于句子选择的关键短语生成
本站小编 Free考研考试/2022-01-02
相关话题/信息 网络 序列 结构 数据
面向对话的融入交互信息的实体关系抽取
摘要实体关系抽取旨在从文本中抽取出实体之间的语义关系,是自然语言处理的一项基本任务。在新闻报道、维基百科等规范文本上,该任务的研究相对丰富且已取得了一定的效果,但面向对话文本的相关研究还处于起始阶段。相较于规范文本,对话是一个交互的过程,大量信息隐藏在交互中,这使得面向对话文本的实体关系抽取更具挑战 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于图卷积记忆网络的方面级情感分类
摘要在方面级情感分类中,常用的方法是用卷积神经网络或循环神经网络提取特征,利用注意力权重获取序列中不同词汇的重要程度。但此类方法未能很好地利用文本的句法信息,导致模型不能准确地在评价词与方面词之间建立联系。该文提出一种图卷积神经记忆网络模型(MemGCN)来解决此依赖问题。首先通过记忆网络存储文本表 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于时空注意力的社交网络信息级联预测模型
摘要针对目前信息级联预测模型的构建多基于级联的时序信息或者空间拓扑结构、极少考虑两者的结合问题,该文提出一种面向社交网络的基于深度学习方法的信息级联预测(InformationCascadePrediction,ICP)模型。首先,使用拉普拉斯矩阵对级联节点采样,生成空间序列;然后,通过结合了图卷积 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于文章和近答案句信息的问题生成模型
摘要自动问题生成任务旨在给文章中的一段文本生成相应的自然语言的问句,该研究在问答系统和语音助手的对话系统中有重要作用,可以帮助它们启动对话和继续对话。目前的神经网络问题生成模型主要是将包含答案的句子或者整篇文章作为模型的输入,而这些方法存在语义表示不能很好地结合句子和文章信息的问题。因此该文提出多输 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合词义信息的文本蕴涵识别方法
摘要文本蕴涵识别是对两个文本之间语义关系的有向推理,而词汇的词义对理解文本的语义以及推理文本之间的语义蕴涵关系有着重要作用。因此,为了有效利用词汇的词义信息推断文本之间的语义蕴涵关系,该文提出一种融合词义信息的文本蕴涵识别方法。该方法首次提出将原始的词汇转化为对应的目标词义,然后利用词汇的词义信息改 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于双通道图神经网络的小样本文本分类
摘要小样本文本分类任务同时面临两个主要问题:①样本量少,易过拟合;②在元学习框架的任务形式下,监督信息被进一步稀疏化。近期工作中,利用图神经网络建模样本的全局信息表示(fullcontextembedding)成为小样本学习领域中一种行之有效的方法,但将其迁移至小样本文本分类任务,由于文本多噪声,且 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于BERT的多层标签指针网络事件抽取模型——2020语言与智能技术竞赛事件抽取任务系统报告
摘要事件抽取(eventextraction,EE)是指从自然语言文本中抽取事件并识别事件类型和事件元素的技术,是智能风控、智能投研、舆情监测等人工智能应用的重要技术基础。该文提出一种端到端的多标签指针网络事件抽取方法,并将事件检测任务融入到事件元素识别任务中,达到同时抽取事件元素及事件类型的目的。 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于特征双重蒸馏网络的方面级情感分析
摘要目前方面级情感分析方法主要利用注意力机制来实现句子与方面词的交互,然而该机制容易导致方面词与句子中各词的错误搭配,引入额外噪声。针对此问题,该文提出了一种基于特征双重蒸馏网络的方面级情感分析方法。首先利用BiLSTM提取句子中各词的上下文语义特征,并结合基于上下文的方面词嵌入方法,获取方面词的语 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02多目标情感分类中文数据集构建及分析研究
摘要目标级情感分类任务是为了得到句子中特定评价目标的情感倾向。一个句子中往往存在多个目标,多个目标的情感可能一致,也可能不一致。但在已有针对目标级情感分类的评测数据集中:①大多数是一个句子一个目标;②在少数有多个目标的句子中,多个目标情感倾向分布并不均衡,多个目标情感一致的句子占较大比例。数据集本身 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02译文质量估计中基于Transformer的联合神经网络模型
摘要译文质量估计作为机器翻译中的一项重要任务,在机器翻译的发展和应用中发挥着重要的作用。该文提出了一种简单有效的基于Transformer的联合模型用于译文质量估计。该模型由Transformer瓶颈层和双向长短时记忆网络组成,Transformer瓶颈层参数利用双语平行语料进行初步优化,模型所有参 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02