删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于神经机器翻译编码器的语义学习分析

本站小编 Free考研考试/2022-01-02

摘要神经机器翻译凭借其良好性能成为目前机器翻译的主流方法,然而,神经机器翻译编码器能否学习到充分的语义信息一直是学术上亟待探讨的问题。为了探讨该问题,该文通过利用抽象语义表示(abstract meaning representation,AMR)所包含的语义特征,分别从单词级别、句子级别两种不同的角度去分析神经机器翻译编码器究竟在多大程度上能够捕获到语义信息,并尝试利用额外的语义信息提高机器翻译性能。实验表明: 首先神经机器翻译编码器能够学习到较好的单词级和句子级语义信息;其次,当神经机器翻译的训练集规模较小时,利用额外语义信息能够提高翻译性能。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3100
相关话题/神经 信息 学术 实验 翻译

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于信息增强BERT的关系分类
    摘要关系分类是自然语言处理领域中重要的语义处理任务,随着机器学习技术的发展,预训练模型BERT在多项自然语言处理任务中取得了大量研究成果,但在关系分类领域尚有待探索。该文针对关系分类的问题特点,提出一种基于实体与实体上下文信息增强BERT的关系分类方法(EC_BERT),该方法利用BERT获取句子特 ...
    本站小编 Free考研考试 2022-01-02
  • 基于用户与产品信息和图卷积网络的情感分类研究
    摘要在评论情感分析的研究中,和评论相关的用户与产品信息对于提高情感分类的准确率有很大的帮助。为了能够有效地利用产品和用户信息,并构建产品和用户信息与评论之间的关联,该文提出一种基于图网络的模型,将产品与用户信息和评论之间的关系构建为一个图,并基于图卷积网络模型学习产品与用户信息对评论的影响,从而提升 ...
    本站小编 Free考研考试 2022-01-02
  • 基于递进式半知识蒸馏的神经机器翻译
    摘要神经机器翻译(NMT)模型通常具有庞大的参数量,例如,Transformer在词表设为3万时有将近1亿的神经元,模型的参数量越大,模型越难优化,且存储模型的资源需求也越高。该文提出了一种压缩方法,用于将复杂且参数量大的NMT模型压缩为精简参数量小的NMT模型。该文同时提出半知识蒸馏方法和递进式半 ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经自回归分布估计的涉案新闻主题模型构建方法
    摘要神经主题模型能有效获取文本的深层语义特征,但现有的神经主题模型忽略了外部知识对获取主题分布的帮助。因此,针对涉案主题分析任务,该文提出了一种基于神经自回归分布估计的涉案新闻主题模型构建方法。以案件要素作为外部知识对iDocNADEe模型进行了扩展,通过计算案件要素与主题词的相关度来构建注意力机制 ...
    本站小编 Free考研考试 2022-01-02
  • 融合通道特征的混合神经网络文本分类模型
    摘要基于卷积神经网络与循环神经网络的混合文本分类模型通常使用单通道词嵌入。单通道词嵌入空间维度低,特征表示单一,导致一维卷积神经网络不能充分学习文本的空间特征,影响了模型的性能。因此,该文提出一种融合通道特征的混合神经网络文本分类模型。该模型使用了双通道词嵌入丰富文本表示,增加了空间维度,在卷积的过 ...
    本站小编 Free考研考试 2022-01-02
  • 融合多特征的分段卷积神经网络对象级情感分类方法
    摘要对象级情感分类旨在判断句子中特定对象的情感极性类别。在现有基于卷积神经网络的研究中,常在模型的池化层采用最大池化操作提取文本特征作为句子表示,该操作未考虑由对象所划分的上下文,因此无法得到更细粒度的对象上下文特征。针对该问题,该文提出一种融合多特征的分段卷积神经网络(multi-featurep ...
    本站小编 Free考研考试 2022-01-02
  • 基于树形语义框架的神经语义解析方法
    摘要语义解析的目标是将自然语言表达映射为机器可理解的逻辑表达,该任务的关键挑战在于难以刻画自然语言中蕴含的组合语义。目前,结合深度神经网络模型的语义解析方法已经成为该领域的主流方法,该类方法通常采用编码器—解码器框架,通过设计树形结构的解码器或者在解码器中添加语法限制,从语法层面上提升逻辑表达生成的 ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经网络融合标签相关性的多标签情感预测研究
    摘要近年来,多标签分类任务(MLC)受到了广泛关注。传统的情感预测被视为一种单标签的监督学习,而忽视了多种情感可能在同一实例中共存的问题。以往的多标签情感预测方法没有同时提取文本的局部特征和全局语义信息,或未考虑标签之间的相关性。基于此,该文提出了一种基于神经网络融合标签相关性的多标签情感预测模型( ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经网络的藏文正字检错法
    摘要在缺乏标注数据的条件下,该文将藏文正字检错任务视为一个分类问题:首先从语言学知识中构建音节混淆子集并给每个原句加噪,然后建立深层双向表征的BERT作为分类模型,最后为了证明该方法的有效性,构建两个基线模型和三种不同领域的测试集,实验结果表明,该方法的结果优于两个基线模型。该文方法在相同领域测试集 ...
    本站小编 Free考研考试 2022-01-02
  • 基于深度神经网络的诗词检索
    摘要中国古典诗词是中国古典文学的代表之一,是中华传统文化的宝藏,源远流长。中国古典诗词研究是自然语言处理方向的一项重要且富有意义的工作。随着人工智能的发展,人工神经网络在图像、文本等领域得到广泛的应用,取得了显著的突破,给人工智能与中国古典诗词相结合提供了新的思路和方法。让机器去理解中国古典诗词的韵 ...
    本站小编 Free考研考试 2022-01-02