删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度学习的流行度预测研究综述

本站小编 Free考研考试/2022-01-02

摘要在线社交网络中的消息流行度预测研究,对推荐、广告、检索等应用场景都具有非常重要的作用。近年来,深度学习的蓬勃发展和消息传播数据的积累,为基于深度学习的流行度预测研究提供了坚实的发展基础。现有的流行度预测研究综述,主要是围绕传统的流行度预测方法展开的,而基于深度学习的流行度预测方法目前仍未得到系统性地归纳和梳理,不利于流行度预测领域的持续发展。鉴于此,该文重点论述和分析现有的基于深度学习的流行度预测相关研究,对近年来基于深度学习的流行度预测研究进行了归纳梳理,将其分为基于深度表示和基于深度融合的流行度预测方法,并对该研究方向的发展现状和未来趋势进行了分析展望。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3082
相关话题/传播 网络 基础 数据 推荐

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 社会网络用户心理健康自动评估研究综述
    摘要心理健康问题正迅速成为世界范围内最严重和最普遍的公共卫生问题之一。社会网络的兴起与普及带来大量与社会网络用户心理状态相关的数据。近年来,利用社会网络数据自动评估检测用户心理健康的研究吸引着越来越多的****,取得了不少成果,但未见对这些成果进行总结分析的工作。该文对社会网络用户心理健康自动评估的 ...
    本站小编 Free考研考试 2022-01-02
  • 融合通道特征的混合神经网络文本分类模型
    摘要基于卷积神经网络与循环神经网络的混合文本分类模型通常使用单通道词嵌入。单通道词嵌入空间维度低,特征表示单一,导致一维卷积神经网络不能充分学习文本的空间特征,影响了模型的性能。因此,该文提出一种融合通道特征的混合神经网络文本分类模型。该模型使用了双通道词嵌入丰富文本表示,增加了空间维度,在卷积的过 ...
    本站小编 Free考研考试 2022-01-02
  • 融合多特征的分段卷积神经网络对象级情感分类方法
    摘要对象级情感分类旨在判断句子中特定对象的情感极性类别。在现有基于卷积神经网络的研究中,常在模型的池化层采用最大池化操作提取文本特征作为句子表示,该操作未考虑由对象所划分的上下文,因此无法得到更细粒度的对象上下文特征。针对该问题,该文提出一种融合多特征的分段卷积神经网络(multi-featurep ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经网络融合标签相关性的多标签情感预测研究
    摘要近年来,多标签分类任务(MLC)受到了广泛关注。传统的情感预测被视为一种单标签的监督学习,而忽视了多种情感可能在同一实例中共存的问题。以往的多标签情感预测方法没有同时提取文本的局部特征和全局语义信息,或未考虑标签之间的相关性。基于此,该文提出了一种基于神经网络融合标签相关性的多标签情感预测模型( ...
    本站小编 Free考研考试 2022-01-02
  • 基于Transformer网络的中文单字词检错方法研究
    摘要错别字自动识别是自然语言处理中一项重要的研究任务,在搜索引擎、自动问答等应用中具有重要价值。尽管传统方法在识别文本中多字词错误方面的准确率较高,但由于中文单字词错误具有特殊性,传统方法对中文单字词检错准确率较低。该文提出了一种基于Transformer网络的中文单字词检错方法。首先,该文通过充分 ...
    本站小编 Free考研考试 2022-01-02
  • 基于神经网络的藏文正字检错法
    摘要在缺乏标注数据的条件下,该文将藏文正字检错任务视为一个分类问题:首先从语言学知识中构建音节混淆子集并给每个原句加噪,然后建立深层双向表征的BERT作为分类模型,最后为了证明该方法的有效性,构建两个基线模型和三种不同领域的测试集,实验结果表明,该方法的结果优于两个基线模型。该文方法在相同领域测试集 ...
    本站小编 Free考研考试 2022-01-02
  • 基于原型网络的细粒度实体分类方法
    摘要细粒度实体分类任务作为命名实体识别任务的扩展,其目的是根据指称及其上下文,发掘实体更细粒度的类别含义。由于细粒度实体语料的标注代价较大,标注错误率较高,因此该文研究了在少量样本情况下的细粒度实体分类方法。该文首先提出了一种特征提取模型,能够分别从单词层面以及字符层面提取实体信息,随后结合原型网络 ...
    本站小编 Free考研考试 2022-01-02
  • 基于深度神经网络的诗词检索
    摘要中国古典诗词是中国古典文学的代表之一,是中华传统文化的宝藏,源远流长。中国古典诗词研究是自然语言处理方向的一项重要且富有意义的工作。随着人工智能的发展,人工神经网络在图像、文本等领域得到广泛的应用,取得了显著的突破,给人工智能与中国古典诗词相结合提供了新的思路和方法。让机器去理解中国古典诗词的韵 ...
    本站小编 Free考研考试 2022-01-02
  • 一个面向中文古诗词理解难易度的人工标注数据集
    摘要向读者推荐阅读难度合适的古诗词有助于提升读者的诗词鉴赏能力。现阶段,围绕古诗词可读性自动化分析的相关研究的突出局限之一是缺乏大规模高质量的数据集。针对该问题,该文研究面向古诗词可读性自动化分析的数据集构建。该文作者对外开放了包含1915篇古诗词的标注阅读理解难度的数据集①。该文首先将数据集划分成 ...
    本站小编 Free考研考试 2022-01-02
  • 基于地理空间数据的知识图谱构建技术研究
    摘要随着3S技术迅猛发展,地理空间数据呈现出爆发式增长趋势,基于地理空间数据构建知识图谱,实现数据到空间知识的转换成为亟待解决的科学问题。针对通用知识图谱仅以属性和语义关系表示空间知识,以及空间关系相对缺失等问题,该文首先描述了空间关系的表示方法;其次,提出了基于空间关系的知识图谱构建技术流程,重点 ...
    本站小编 Free考研考试 2022-01-02