删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融合CNN和EWC算法的不平衡文本情绪分类方法

本站小编 Free考研考试/2022-01-02

摘要文本情绪分类是自然语言处理领域的一个基本任务。然而,基于不平衡数据的学习使得传统文本情绪分类方法的分类性能降低。针对这个问题,该文提出了一种融合CNN和EWC算法的不平衡文本情绪分类方法。首先,该方法使用随机欠采样方法得到多组平衡数据;其次,按顺序单独使用每一组平衡数据输入CNN训练,同时在训练过程中引入EWC算法用以克服CNN中的灾难性遗忘;最后,把使用最后一组平衡数据输入CNN训练得到的模型作为最终分类模型。实验结果表明,该方法在分类性能上明显优于基于欠采样和多分类算法的集成学习框架,且该方法比基于多通道LSTM神经网络的不平衡情绪分类方法在Accuracy和G-mean上分别提高了1.9%和2.1%。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2935
相关话题/数据 实验 单独 方法 情绪

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 中文矛盾语块数据集构建和边界识别研究
    摘要文本矛盾是自然语言理解的一项基础性问题。目前的研究大多针对矛盾识别任务,而深入文本内部探究矛盾产生原因的工作较少,且缺乏专门的中文矛盾数据集。该文在前人矛盾研究基础上,提出矛盾语块的概念,将其划分为7种类型,并根据标注规范构建了包含16224条数据的中文矛盾语块(CCB)数据集。基于此数据集,利 ...
    本站小编 Free考研考试 2022-01-02
  • 融合BERT语境词向量的译文质量估计方法研究
    摘要蕴含语义、句法和上下文信息的语境词向量作为一种动态的预训练词向量,在自然语言处理的下游任务中有着广泛应用。然而,在机器译文质量估计中,没有相关研究工作涉及语境词向量。该文提出利用堆叠双向长短时记忆网络将BERT语境词向量引入神经译文质量估计中,并通过网络并联的方式与传统的译文质量向量相融合。在C ...
    本站小编 Free考研考试 2022-01-02
  • 基于边界识别与组合的裁判文书证据抽取方法研究
    摘要裁判文书中的证据是法官量刑的基础。通过证据抽取可以对案件审判质量进行评估,从而支撑“智慧法院”建设。裁判文书中的证据大多数都比较长且存在嵌套现象,例如,“张X的身份证复印件”中的“身份证复印件”,而传统的命名实体识别模型BiLSTM-CRF对较长实体和嵌套实体的识别性能较低。为了解决因裁判文书中 ...
    本站小编 Free考研考试 2022-01-02
  • 面向法律文书的量刑预测方法研究
    摘要大规模法律文书数据为智能司法审判研究提供了重要的数据基础。量刑预测是智能司法审判中的一个关键环节,对维护司法审判的公平与公正具有重要意义。该文首先基于区间划分和多模型投票方法进行了量刑预测初探,发现区间划分策略可以有效缓解刑期类别众多和数据不平衡问题;在此基础上,又采用基于量刑属性的预测方法来充 ...
    本站小编 Free考研考试 2022-01-02
  • 基于GMM的文本规则挖掘的粗糙集方法研究
    摘要领域文本具有结构复杂、相似性高以及动态变化等特点,且存在着连续型与离散型并存的混合数据,这在一定程度上限制了知识发现方法对文本规则的挖掘效率。针对这一问题,该文提出了基于GMM与粗糙集的文本规则挖掘方法。该方法首先根据目标数据的属性类型构造信息表;然后利用高斯混合模型(GMM,GaussianM ...
    本站小编 Free考研考试 2022-01-02
  • 基于Bi-GRU并包含注意力机制的文本数据真值发现
    摘要针对传统真值发现算法无法直接应用于文本数据的问题,该文提出基于Bi-GRU并包含注意力机制的文本数据真值发现方法。根据文本答案的多因素性,词语使用的多样性与文本数据的稀疏性等特点,该文对用户答案进行细粒度划分,并利用Bi-GRU表征文本答案的语义信息,利用双层注意力机制分别学习用户答案关键词可靠 ...
    本站小编 Free考研考试 2022-01-02
  • 基于隐含主题协同注意力网络的领域分类方法
    摘要基于注意力机制的神经网络模型在文本分类任务中显示出了很好的效果。然而当训练数据的规模有限,或者测试数据与训练数据的分布有较大差异时,一些有价值的信息词很难在训练中被模型捕捉到。为此,该文提出了一种新的基于协同注意力(co-attention)网络的领域分类方法。该文利用隐含主题模型学习隐含主题注 ...
    本站小编 Free考研考试 2022-01-02
  • 结合预训练模型和语言知识库的文本匹配方法
    摘要针对文本匹配任务,该文提出一种大规模预训练模型融合外部语言知识库的方法。该方法在大规模预训练模型的基础上,通过生成基于WordNet的同义—反义词汇知识学习任务和词组—搭配知识学习任务引入外部语言学知识。进而,与MT-DNN多任务学习模型进行联合训练,以进一步提高模型性能。最后利用文本匹配标注数 ...
    本站小编 Free考研考试 2022-01-02
  • 基于语言特征自动获取的反问句识别方法
    摘要反问句是以疑问的形式表达强烈情感的修辞方式,对其有效识别可为自然语言处理中的情感分析任务提供技术支持。该文提出了一种基于语言特征自动获取的反问句识别方法。首先,利用标签注意机制,建立了一个数据驱动的特征抽取模型,用于获取与任务相关的词汇、句法结构、符号标记和话题等语言特征。其次,利用Bi-LST ...
    本站小编 Free考研考试 2022-01-02
  • MaskAE: 基于无监督的短文本情感迁移方法
    摘要基于无监督的文本情感迁移技术是通过迁移原句子情感并且保持句子内容不变,生成带有其他情感的新句子的技术。这项技术在两个方面富有挑战性:第一,没有平行语料;第二,文本属性纠缠问题,即当改变句子情感时,通常难以保证句子内容不变。该文提出了一个基于掩码自编码器(mask-autoEncoder,Mask ...
    本站小编 Free考研考试 2022-01-02