删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于双向LSTM与CRF融合模型的否定聚焦点识别

本站小编 Free考研考试/2022-01-02

摘要否定表达作为自然语言文本中常见的语言现象,对自然语言处理上层应用,如情感分析、信息抽取等,具有十分重要的意义。否定聚焦点识别任务是更细粒度的否定语义分析,其旨在识别出句子中被否定词修饰和强调的文本片段。该文将该任务作为序列标注问题,提出了一种基于双向长短期记忆网络结合条件随机场(BiLSTM-CRF)的否定聚焦点识别模型,其中,BiLSTM网络能够充分利用上下文信息并抓取全局特征,CRF层能够有效学习输出标签之间的前后依赖关系。在*SEM2012评测任务数据集上的实验结果表明,基于BiLSTM-CRF的否定聚焦点识别方法的准确率(accuracy)达到69.58%,与目前最好的系统相比,性能提升了2.44%。

PDF全文下载地址:

http://jcip.cipsc.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=2695
相关话题/信息 网络 序列 系统 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 融合反问特征的卷积神经网络的中文反问句识别
    摘要反问是一种带有强烈情感色彩的表达方式,对其进行自动识别将提升隐式情感分析的整体效率。针对汉语反问句识别问题,该文分析了反问句的句式特点,将反问句的句式结构融入到卷积神级网络的构建中,提出一种融合句式结构的卷积神经网络的反问句识别方法。首先利用置信度大于70%的反问句的特征词、序列模式,对大规模未 ...
    本站小编 Free考研考试 2022-01-02
  • 融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析
    摘要文本情感倾向性分析是自然语言处理研究领域的一个基础问题。基于深度学习的模型是处理此问题的常用模型。而当前的多数深度学习模型在中文文本情感倾向性分析方面的应用存在两个问题:一是未能充分考虑到文本的层次化结构对情感倾向性判定的重要作用,二是传统的分词技术在处理文本时会产生歧义。该文针对这些问题基于卷 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多特征融合编码的神经网络依存句法分析模型
    摘要在基于神经网络的依存句法分析中,对分析栈和决策层信息的表示和利用依然有值得深入研究的空间。针对分析栈的表示,已有工作并没有对单棵依存子树独立编码的表示,导致无法利用各个依存子树的局部特征;也没有对生成的依存弧序列进行编码,导致无法利用依存弧的全局信息。针对决策层的表示,已有工作利用MLP预测转移 ...
    本站小编 Free考研考试 2022-01-02
  • 基于主题网络的伪主题分析
    摘要传统无监督的主题建模方法利用相互独立的主题变量抽象描述文本语义,忽略了各主题内部隐含的结构和联系,粗粒化的文本主题分析加剧了“强制主题”问题对文本建模的影响。该文通过研究主题网络社区内部结构,结合主题内部语义耦合关系与网络拓扑结构,提出伪主题分析方法来识别和解释主题,实现从网络结构角度描述文本语 ...
    本站小编 Free考研考试 2022-01-02
  • 基于序列到序列的中文短文本省略补全
    摘要省略作为一种常见的语言现象,在上下文中普遍存在,特别是在问答、对话等短文本中出现的频率更高。不同于传统的机器学习方法,该文针对问答、对话这样的短文本,构建了一个序列到序列的神经网络模型来实现对上下文中出现的省略进行识别和补全。在搜集和整理的短文本问答和对话语料上进行了各种实验,验证了该模型在省略 ...
    本站小编 Free考研考试 2022-01-02
  • 基于自联想记忆与卷积神经网络的跨语言情感分类
    摘要该文提出了一种以商品评论为对象的基于语义融合的跨语言情感分类算法。该算法首先从短文本语义表示的角度出发,基于开源工具Word2Vec预先生成词嵌入向量来获得不同语言下的信息表示;其次,根据不同语种之间的词向量的统计关联性提出使用自联想记忆关系来融合提取跨语言文档语义;然后利用卷积神经网络的局部感 ...
    本站小编 Free考研考试 2022-01-02
  • 面向任务口语对话系统中不含槽信息话语的端到端对话控制
    摘要端到端(end-to-end)模型因其能有效避免传统管道式设计存在的错误传递与累积问题,成为了近年来口语对话系统(spokendialoguesystem,SDS)的研究热点。在面向任务SDS的end-to-end对话控制中,处理携带任务领域语义信息(槽信息)的话语可以结合命名实体识别、数据库查 ...
    本站小编 Free考研考试 2022-01-02
  • 基于统计和神经网络的蒙汉机器翻译研究
    摘要该文对基于传统统计模型的蒙汉机器翻译模型和基于神经网络机器翻译模型进行了研究。其中,神经网络翻译模型分别为基于CNN、RNN的翻译模型,并通过将所有翻译模型结果进行句子级融合得到一个融合模型。面对蒙汉翻译面临资源稀少、蒙古文形态复杂等困难,该文提出多种翻译技术,对各个模型进行改进,并对蒙古文进行 ...
    本站小编 Free考研考试 2022-01-02
  • 基于BiLSTM-CRF模型的汉语否定信息识别
    摘要否定信息识别是将自然语言中的肯定信息与否定信息分离,它对信息检索、文本挖掘、情感分析等都有重要作用。该文主要对汉语否定信息中的触发词识别和覆盖域识别进行研究,采用双向长短期记忆网络结合条件随机场(BiLSTM-CRF)为模型,预训练的词向量为输入特征对触发词进行识别,在此基础上添加已知触发词特征 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多篇章多答案的阅读理解系统
    摘要机器阅读理解任务一直是自然语言处理领域的重要问题。2018机器阅读理解技术竞赛提供了一个基于真实场景的大规模中文阅读理解数据集,对中文阅读理解系统提出了很大的挑战。为了应对这些挑战,我们在数据预处理、特征表示、模型选择、损失函数的设定和训练目标的选择等方面基于以往的工作做出了对应的设计和改进,构 ...
    本站小编 Free考研考试 2022-01-02