删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于多核CPU的表约束并行传播模式研究

本站小编 Free考研考试/2022-01-02

摘要:并行传播是并行约束程序领域中的一个研究方向,其研究内容是如何并行执行在约束上的过滤算法.根据维持表约束网络广义弧相容(generalized arc consistency,简称GAC)的串行传播模式,提出了维持表约束网络临时广义弧相容(temporary generalized arc consistency,简称TGAC)的并行传播模式,该模式基于多核CPU,由并行传播算法和并行过滤算法两部分组成;之后,给出了并行传播模式的可靠性证明,而且通过对并行传播模式的最坏时间复杂度分析,可以认为并行传播模式在平均过滤时间较长的实例上要快于串行传播模式;最终的实验结果也验证了上述结论,并行传播模式在多数实例集上取得了从1.4~3.4不等的加速比.



Abstract:Parallel propagation is a research direction in the field of parallel constraint programming, and its research content is how to implement filtering algorithms on constraints in parallel. According to the serial propagation mode which enforces generalized arc consistency (GAC) on table constraint network, this study proposes a parallel propagation mode to enforce temporary generalized arc consistency (TGAC) on table constraint network. This mode is based on multi-core CPU and consists of parallel propagation algorithm and parallel filtering algorithm. After that, the reliability of the parallel propagation mode is proved, and through the analysis of the worst case time complexity of the parallel propagation mode, it is also demonstrated that the parallel propagation mode is faster than the serial propagation mode in instances of which the average filtering time is longer. Finally, the experimental results also confirm the above conclusion, and the parallel propagation mode achieves a speed-up ratio ranging from 1.4 to 3.4 on most series.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5989
相关话题/传播 网络 实验 可靠性 程序

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于卷积神经网络的低嵌入率空域隐写分析
    摘要:近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计,通过适当选择批量归一化操作和激活函数来提升网络的性能.实验结果表明 ...
    本站小编 Free考研考试 2022-01-02
  • 一种超低损失的深度神经网络量化压缩方法
    摘要:深度神经网络(deepneuralnetwork,简称DNN)量化是一种高效的模型压缩方法,使用少量位宽表示模型计算过程中的参数和中间结果数据.数据位宽会直接影响内存占用、计算效率和能耗.以往的模型量化研究缺乏有效的定量分析,这导致量化损失难以预测.提出了一种超低损失的DNN量化方法(ultr ...
    本站小编 Free考研考试 2022-01-02
  • 基于关联记忆网络的中文细粒度命名实体识别
    摘要:细粒度命名实体识别是对文本中的实体进行定位,并将其分类至预定义的细粒度类别中.目前,中文细粒度命名实体识别仅使用预训练语言模型对句子中的字符进行上下文编码,并没有考虑到类别的标签信息具有区分实体类别的能力.由于预测句子不带有实体标签,使用关联记忆网络来捕获训练集句子的实体标签信息,并将标签信息 ...
    本站小编 Free考研考试 2022-01-02
  • 多等级通信半径的无源传感器网络中的覆盖问题
    摘要:无源传感器网络是近年来兴起的一种新型的网络结构,可用于解决传统无线传感器网络能量有限、寿命受限的问题.在无源传感器网络中,每个无源传感器节点配备有能量收集模块,可以从周围环境中获取能量.由于周围环境中的能量是无限的,这样,从能量的角度来讲,无源传感器网络的网络寿命是无限的.这样就解决了传统无线 ...
    本站小编 Free考研考试 2022-01-02
  • 高精度的大规模程序数据竞争检测方法
    摘要:随着技术的不断发展,软件系统的非确定性(uncertainty)不断增强,数据竞争是并发系统这一类典型的非确定性软件系统中常见的缺陷.尽管数据竞争静态检测近年来取得了巨大进展,但其面临的重要问题仍然存在.先前的静态技术要么以分析精度为代价达到高扩展性,要么由于高精度分析而导致可扩展性问题.提出 ...
    本站小编 Free考研考试 2022-01-02
  • 基于指针生成网络的代码注释自动生成模型
    摘要:代码注释在软件质量保障中发挥着重要的作用,它可以提升代码的可读性,使代码更易理解、重用和维护.但是出于各种各样的原因,有时开发者并没有添加必要的注释,使得在软件维护的过程中,往往需要花费大量的时间来理解代码,大大降低了软件维护的效率.近年来,多项工作利用机器学习技术自动生成代码注释,这些方法从 ...
    本站小编 Free考研考试 2022-01-02
  • Petri网的反向展开及其在程序数据竞争检测的应用
    摘要:展开技术借助分支进程可在一定程度上缓解Petri网性质分析中的状态爆炸问题.但展开网中仍然包含了系统的所有状态信息.某些应用问题仅需对系统特定状态的可覆盖性进行判定,以此为目标,有望缩减网系统展开的规模.为此,针对安全Petri网的可覆盖性判定问题提出了一种目标导向的反向展开算法,结合启发式技 ...
    本站小编 Free考研考试 2022-01-02
  • 基于锁增广分段图的多线程程序死锁检测
    摘要:死锁是并行程序常见的缺陷之一,动态死锁分析方法根据程序运行轨迹构建锁图、分段图等模型来检测死锁.然而,锁图及其现有的各种变型无法区分同一循环中锁授权语句的多次执行,扩展锁图中记录的锁集无法捕捉线程曾经持有而又随后释放的锁信息,分段图无法刻画锁的获取和释放操作与线程启动操作耦合而导致的段间依赖关 ...
    本站小编 Free考研考试 2022-01-02
  • 可满足性问题中信念传播算法的收敛性分析
    摘要:信念传播算法是基于因子图模型的消息传递算法,通过图中的边,将消息从一个结点传递给另一个结点,以高概率地确定部分变量的取值,这种方法被实验证明在求解可满足性问题时非常有效.然而,目前还未对其有效性从理论角度给予解释.通过对信念传播算法的收敛性分析,试图从理论上解释算法的有效性.在信息传播算法的信 ...
    本站小编 Free考研考试 2022-01-02
  • 程序智能合成技术研究进展
    摘要:近年来,随着信息技术快速发展,软件重要性与日俱增,极大地推动了国民经济的发展.然而,由于软件业务形态越来越复杂和需求变化越来越快,软件的开发和维护成本急剧增加,迫切需要探索新的软件开发模式和技术.目前,各行业在软件活动中积累了规模巨大的软件代码和数据,这些软件资产为软件智能化开发建立了数据基础 ...
    本站小编 Free考研考试 2022-01-02