摘要:代码注释在软件质量保障中发挥着重要的作用,它可以提升代码的可读性,使代码更易理解、重用和维护.但是出于各种各样的原因,有时开发者并没有添加必要的注释,使得在软件维护的过程中,往往需要花费大量的时间来理解代码,大大降低了软件维护的效率.近年来,多项工作利用机器学习技术自动生成代码注释,这些方法从代码中提取出语义和结构化信息后,输入序列到序列的神经网络模型生成相应的注释,均取得了不错的效果.然而,当前最好的代码注释生成模型Hybrid-DeepCom仍然存在两方面的不足.一是其在预处理时可能破坏代码结构导致不同实例的输入信息不一致,使得模型学习效果欠佳;二是由于序列到序列模型的限制,其无法在注释中生成词库之外的单词(out-of-vocabulary word,简称OOV word).例如在源代码中出现次数极少的变量名、方法名等标识符通常都为OOV词,缺少了它们,注释将难以理解.为解决上述问题,提出了一种新的代码注释生成模型CodePtr.一方面,通过添加完整的源代码编码器解决代码结构被破坏的问题;另一方面,引入指针生成网络(pointer-generator network)模块,在解码的每一步实现生成词和复制词两种模式的自动切换,特别是遇到在输入中出现次数极少的标识符时模型可以直接将其复制到输出中,以此解决无法生成OOV词的问题.最后,在大型数据集上通过实验对比了CodePtr和Hybrid-DeepCom模型,结果表明,当词库大小为30 000时,CodePtr的各项翻译效果指标平均提升6%,同时,处理OOV词的效果提升近50%,充分说明了CodePtr模型的有效性.
Abstract:Code comments plays an important role in software quality assurance, which can improve the readability of source code and make it easier to understand, reuse, and maintain. However, for various reasons, sometimes developers do not add the necessary comments, which make developers always waste a lot of time understanding the source code and greatly reduces the efficiency of software maintenance. In recent years, lots of work using machine learning to automatically generate corresponding comments for the source code. These methods extract such information as code sequence and structure, and then utilize sequence to sequence (seq2seq) neural model to generate the corresponding comments, which have achieved sound results. However, Hybrid-DeepCom, the state-of-the-art code comment generation model, is still deficient in two aspects. The first is that it may break the code structure during preprocessing, resulting in inconsistent input information of different instances, making the model learning effect poor; the second is that due to the limitations of the seq2seq model, it is not able to generate out-of-vocabulary word (OOV word) in the comment. For example, variable names, method names, and other identifiers that appear very infrequently in the source code are usually OOV words, without them, comments would be difficult to be understood. In order to solve this problem, the automatic comment generation model named CodePtr is proposed in this study. On the one hand, a complete source code encoder is added to solve the problem of code structure being broken; on the other hand, the pointer-generator network module is introduced to realize the automatic switch between the generated word mode and the copy word mode in each step of decoding, especially when encountering the identifier with few times in the input, the model can directly copy it to the output, so as to solve the problem of not being able to generate OOV word. Finally, this study compares the CodePtr and Hybrid-DeepCom models through experiments on large data sets. The results show that when the size of the vocabulary is 30 000, CodePtr is increased by 6% on average in translation performance metrics, and the effect of OOV word processing is improved by nearly 50%, which fully demonstrates the effectiveness of CodePtr model.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6270
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于指针生成网络的代码注释自动生成模型
本站小编 Free考研考试/2022-01-02
相关话题/代码 序列 软件 信息 结构
基于路径分析和信息熵的错误定位方法
摘要:软件错误定位是一项耗时又费力的工作,因此如何提高软件错误定位的自动化程度一直以来都是软件工程领域研究的热点.现有的基于频谱的错误定位方法很少利用程序的上下文信息,而程序的上下文信息对错误定位至关重要.针对这一问题,提出了一种基于路径分析和信息熵的错误定位方法FLPI.该方法在基于频谱信息技术的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02针对复杂用户评论的代码质量属性判断
摘要:随着开发者社区和代码托管平台成为程序员获取代码的主要途径,针对代码的用户评论数量急剧增加.用户在使用代码后给出的评论中包含多种静态和动态的代码质量属性信息,但是由于用户评论多为复杂句,使得评论中包含的代码质量属性难以判断.针对复杂用户评论的代码质量属性判断将有助于分析用户评论中的代码质量信息, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向代码相似性检测的相似哈希改进方法
摘要:代码相似性检测(codesimilaritydetection)是软件工程领域的基本任务之一,其在剽窃检测、许可证违反检测、软件复用分析以及漏洞发现等方向均起着重要作用.随着软件开源化的普及以及开源代码量的高速增长,开源代码在各个领域的应用日益频繁,给传统的代码相似性检测方法带来了新的挑战.现 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于代码自然性的切片粒度缺陷预测方法
摘要:软件缺陷预测是软件质量保障领域的一个活跃话题,它可以帮助开发人员发现潜在的缺陷并更好地利用资源.如何为预测系统设计更具判别力的度量元,并兼顾性能与可解释性,一直是人们致力于研究的方向.针对这一挑战,提出了一种基于代码自然性特征的缺陷预测方法——CNDePor.该方法通过正逆双向度量代码并利用质 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02C2P:基于Pi演算的协议C代码形式化抽象方法和工具
摘要:形式化方法为安全协议分析提供了理论工具,但经过形式化验证过的协议标准在转换为具体程序实现时,可能无法满足相应的安全属性.为此,提出了一种检测安全协议代码语义逻辑错误的形式化验证方法.通过将协议C源码自动化抽象为Pi演算模型,基于Pi演算模型对协议安全属性形式化验证.最后给出了方案转换的正确性证 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于分支标记的数据流模型的代码生成方法
摘要:模型驱动开发以其低错误率、易仿真、易验证的特点,在嵌入式软件开发中被广泛应用.近年来,基于模型的嵌入式软件开发方法及相应工具也在逐渐发展和完善.数据流模型是各种建模工具中使用最为频繁的语义模型,然而,各种工具对于数据流模型的代码生成能力却参差不齐,特别是对于数据分支组件的支持,当前主流的建模工 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向持续软件工程的微服务架构技术专题前言
摘要:随着软件互联网化和服务化的高度发展,持续性(continuity)成为现代软件系统的基本特性之一,覆盖从商业策划、软件开发、运维、演化的所有环节,使得软件系统在持续稳定提供功能和服务的同时,软件系统的边界和内部结构始终处于不断变化、持续更新和适应之中,持续软件工程(continuoussoft ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向领域的软件系统构造与质量保障专题前言
摘要:软件是推动新一代信息技术发展的驱动力.随着互联网、云计算、人工智能等技术的快速发展,软件与物联网、区块链、自动驾驶等众多领域的融合进一步加强,正引领并促进这些领域向数字化、智能化发展,为社会、经济的加速演进和创新发展带来了新的契机.因此,面向领域的软件技术不仅是软件领域,也是众多其他领域国内外 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种结构信息增强的代码修改自动转换方法
摘要:在开发过程中,开发人员在进行缺陷修复、版本更新时,常常需要修改多处相似的代码.如何进行自动代码修改已成为软件工程领域的热点研究问题.一种行之有效的方式是:给定一组代码修改示例,通过抽取其中的代码修改模式,辅助相似代码进行自动转换.在现有工作中,基于深度学习的方法取得了一定进展,但在捕获代码间的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02融合代码与文档的软件功能特征挖掘方法
摘要:在软件复用过程中,简洁、清楚的软件功能自然语言描述是帮助复用者快速了解待复用软件项目/代码库的前提和基础.但当前开源软件往往缺乏高质量的软件功能说明文档,使得这一过程变得更加复杂和困难.为此,提出了一种融合代码与文档的软件功能特征挖掘方法.该方法以动宾短语的形式描述软件功能特征,通过迭代挖掘软 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02