删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于一种条件熵距离惩罚的生成式对抗网络

本站小编 Free考研考试/2022-01-02

摘要:生成高质量的样本一直是生成式对抗网络(generative adversarial networks,简称GANs)领域的主要挑战之一.鉴于此,利用条件熵构建一种距离,并将此直接惩罚于GANs生成器目标函数,在尽可能保持熵不变的条件下,迫使生成分布逼近目标分布,从而大幅度地提高网络生成样本的质量.除此之外,还通过优化GANs的网络结构以及改变两个网络的初始化策略,以进一步提高GANs的训练效率.在多个数据集上的实验结果显示,所提出的算法显著提高了GANs生成样本的质量;尤其是在CIFAR10、STL10和CelebA数据集上,将最佳的FID值从20.70、16.15、4.65分别降低到14.02、12.83、3.22.



Abstract:Generating high-quality samples is always one of the main challenges in generative adversarial networks (GANs) field. To this end, in this study, a GANs penalty algorithm is proposed, which leverages a constructed conditional entropy distance to penalize its generator. Under the condition of keeping the entropy invariant, the algorithm makes the generated distribution as close to the target distribution as possible and greatly improves the quality of the generated samples. In addition, to improve the training efficiency of GANs, the network structure of GANs is optimized and the initialization strategy of the two networks is changed. The experimental results on several datasets show that the penalty algorithm significantly improves the quality of generated samples. Especially, on the CIFAR10, STL10, and CelebA datasets, the best FID value is reduced from 16.19, 14.10, 4.65 to 14.02, 12.83, and 3.22, respectively.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6156
相关话题/网络 质量 数据 实验 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 支撑机器学习的数据管理技术综述
    摘要:应用驱动创新,数据库技术就是在支持主流应用的提质降本增效中发展起来的.从OLTP、OLAP到今天的在线机器学习建模无不如此.机器学习是当前人工智能技术落地的主要途径,通过对数据进行建模而提取知识、实现预测分析.从数据管理的视角对机器学习训练过程进行解构和建模,从数据选择、数据存储、数据存取、自 ...
    本站小编 Free考研考试 2022-01-02
  • 支撑人工智能的数据管理与分析技术专刊前言
    摘要:近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中, ...
    本站小编 Free考研考试 2022-01-02
  • 数据库内AI模型优化
    摘要:在大量变化着的数据中,数据分析师常常只关心预测结果为特定值的少量数据.然而,利用机器学习模型进行推理的工作流程中,由于机器学习算法库默认数据以单表方式组织,用户必须先通过SQL语句查询出全部数据,即使随后在模型推理过程中会将大量数据丢弃.指出了在这个过程中,如果可以预先从模型中提取信息,就有望 ...
    本站小编 Free考研考试 2022-01-02
  • 面向企业数据孤岛的联邦排序学习
    摘要:排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由 ...
    本站小编 Free考研考试 2022-01-02
  • 多区间速度约束下的时序数据清洗方法
    摘要:为进一步优化推广大数据及人工智能技术,作为数据管理与分析的基础,数据质量问题日益成为相关领域的研究热点.通常情况下,数据采集及记录仪的物理故障或技术缺陷等会导致收集到的数据存在一定的错误,而异常错误会对后续的数据分析以及人工智能过程产生不可小视的影响,因此在数据应用之前,需要对数据进行相应的数 ...
    本站小编 Free考研考试 2022-01-02
  • 捕获局部语义结构和实例辨别的无监督哈希
    摘要:由于具有低存储成本、高效检索、低标注成本等方面的优势,无监督的哈希技术已经引起了学术界越来越多的关注,并且已经广泛地应用到大规模数据库检索问题中.先前的无监督方法大部分依靠数据集本身的语义结构作为指导信息,要求在哈希空间中,数据的语义信息能够得到保持,从而完成哈希编码的学习.因此,如何精确地表 ...
    本站小编 Free考研考试 2022-01-02
  • 面向时空图建模的图小波卷积神经网络模型
    摘要:时空图建模是分析图形结构系统中各要素空间关系与时间趋势的一个基础工作.传统的时空图建模方法主要基于图中节点与节点关系固定的显式结构进行空间关系挖掘,这严重限制了模型的灵活性.此外,未考虑节点间的时空依赖关系的传统建模方法不能捕获节点间的长时时空趋势.为了克服这些缺陷,研究并提出了一种新的用于时 ...
    本站小编 Free考研考试 2022-01-02
  • KGDB:统一模型和语言的知识图谱数据库管理系统
    摘要:知识图谱是人工智能的重要基石,其目前主要有RDF图和属性图两种数据模型,在这两种数据模型之上有数种查询语言.RDF图上的查询语言为SPARQL,属性图上的查询语言主要为Cypher.10年来,各个社区开发了分别针对RDF图和属性图的不同数据管理方法,不统一的数据模型和查询语言限制了知识图谱的更 ...
    本站小编 Free考研考试 2022-01-02
  • PandaDB:一种异构数据智能融合管理系统
    摘要:随着大数据应用的不断深入,对大规模结构化/非结构化数据进行融合管理和分析的需求日益凸显.然而,结构化/非结构化数据在存储管理方式、信息获取方式、检索方式方面的差异给融合管理和分析带来了技术挑战.提出了适用于异构数据融合管理和语义计算的属性图扩展模型,并定义了相关属性操作符和查询语法.接着,基于 ...
    本站小编 Free考研考试 2022-01-02
  • 用于表格事实检测的图神经网络模型
    摘要:在自然语言理解和语义表征的研究中,往往需要验证一句文本陈述是否基于给定的事实证据,这就是事实检测任务.现有的研究主要局限于处理文本事实验证,而结构化证据下的验证还有待探索,比如基于表格等形式的事实验证.TabFact作为最新的基于表格的事实验证数据集,基线方法并没有很好地利用表格的结构性特征. ...
    本站小编 Free考研考试 2022-01-02