摘要:深度学习在计算机视觉领域取得了重大成功,超越了众多传统的方法.然而近年来,深度学习技术被滥用在假视频的制作上,使得以Deepfakes为代表的伪造视频在网络上泛滥成灾.这种深度伪造技术通过篡改或替换原始视频的人脸信息,并合成虚假的语音来制作色情电影、虚假新闻、政治谣言等.为了消除此类伪造技术带来的负面影响,众多****对假视频的鉴别进行了深入的研究,并提出一系列的检测方法来帮助机构或社区去识别此类伪造视频.尽管如此,目前的检测技术仍然存在依赖特定分布数据、特定压缩率等诸多的局限性,远远落后于假视频的生成技术.并且不同****解决问题的角度不同,使用的数据集和评价指标均不统一.迄今为止,学术界对深度伪造与检测技术仍缺乏统一的认识,深度伪造和检测技术研究的体系架构尚不明确.回顾了深度伪造与检测技术的发展,并对现有研究工作进行了系统的总结和科学的归类.最后讨论了深度伪造技术蔓延带来的社会风险,分析了检测技术的诸多局限性,并探讨了检测技术面临的挑战和潜在研究方向,旨在为后续****进一步推动深度伪造检测技术的发展和部署提供指导.
Abstract:Deep learning has achieved great success in the field of computer vision, surpassing many traditional methods. However, in recent years, deep learning technology has been abused in the production of fake videos, making fake videos represented by Deepfakes flooding on the Internet. This technique produces pornographic movies, fake news, political rumors by tampering or replacing the face information of the original videos and synthesizes fake speech. In order to eliminate the negative effects brought by such forgery technologies, many researchers have conducted in-depth research on the identification of fake videos and proposed a series of detection methods to help institutions or communities to identify such fake videos. Nevertheless, the current detection technology still has many limitations such as specific distribution data, specific compression ratio, and so on, far behind the generation technology of fake video. In addition, different researchers handle the problem from different angles. The data sets and evaluation indicators used are not uniform. So far, the academic community still lacks a unified understanding of deep forgery and detection technology. The architecture of deep forgery and detection technology research is not clear. In this review, the development of deep forgery and detection technologies are reviewed. Besides, existing research works are systematically summarize and scientifically classified. Finally, the social risks posed by the spread of Deepfakes technology are discussed, the limitations of detection technology are analyzed, and the challenges and potential research directions of detection technology are discussed, aiming to provide guidance for follow-up researchers to further promote the development and deployment of Deepfakes detection technology.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6140
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
深度伪造与检测技术综述
本站小编 Free考研考试/2022-01-02
相关话题/技术 数据 计算机 信息 电影
基于U-Net结构改进的医学影像分割技术综述
摘要:深度学习在医学影像分割领域得到广泛应用,其中,2015年提出的U-Net因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多****针对U-Net结构也在不断地改进和扩展,比如编解码器的改进、外接特征金字塔等.通过对基于U-Net结构改进 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向AI的数据管理技术综述
摘要:人工智能技术因其强大的学习和泛化能力已被广泛应用于各种真实场景中.然而,现有的人工智能技术仍然面临着三大挑战:第一,现有的AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有的AI算法训练效率低,造成了大量计算资源的浪费,甚至延 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02SGX应用支持技术研究进展
摘要:安全与可信是云计算中极为重要的需求,如何保护用户在云平台上托管的应用程序代码和数据的安全、防止云服务提供商和其他攻击者窃取用户机密数据,一直是个难题.2013年,Intel公司提出了新的处理器安全技术SGX,能够在计算平台上提供一个用户空间的可信执行环境,保证用户关键代码及数据的机密性和完整性 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向网络取证的网络攻击追踪溯源技术分析
摘要:首先定位网络攻击事件的源头,然后进行有效的电子数据证据的收集,是网络取证的任务之一.定位网络攻击事件源头需要使用网络攻击追踪溯源技术.然而,现有的网络攻击追踪溯源技术研究工作主要从防御的角度来展开,以通过定位攻击源及时阻断攻击为主要目标,较少会考虑到网络取证的要求,从而导致会在网络攻击追踪溯源 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向时序图数据的快速环枚举算法
摘要:时序图数据是一类边上带有时间戳信息的图数据.在时序图数据中,时序环是边满足时间戳递增约束的回路.时序环枚举在现实中有着很多应用,它可以帮助挖掘金融网络中的欺诈行为.此外,研究时序环的数量对于刻画不同时序图的特性也有重要作用.基于2018年由RohitKumar等人提出的时序环枚举算法(2SCE ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于区块链技术的公平合约交换协议的实现
摘要:当前的区块链技术,只在链上实现了“利益”的可信传递,而对应的“责任”传递还未有对应的链上实现,其关键问题是“责任”的载体及“责任”传递的接收确认.只包含“利益”的链上传递,因此,链上建立的信任关系是单向的,无法建立传递发起方对接收方的信任.从线上公平合约交换协议研究出发,给出了无可信第三方的、 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据驱动的移动应用用户接受度建模与预测
摘要:应用市场(appmarket)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02函数级数据依赖图及其在静态脆弱性分析中的应用
摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02类属型数据核子空间聚类算法
摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于采样的在线大图数据收集和更新
摘要:互联网中,以网页、社交媒体和知识库等为载体呈现的大量非结构化数据可表示为在线大图.在线大图数据的获取包括数据收集和更新,是大数据分析与知识工程的重要基础,但面临着数据量大、分布广、异构和变化快速等挑战.基于采样技术,提出并行、自适应的在线大图数据收集和更新方法.首先,将分支限界方法与半蒙特卡罗 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02