删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

智能仓储货位规划与AGV路径规划协同优化算法

本站小编 Free考研考试/2022-01-02

摘要:智能仓储的优化一般分为货架优化和路径优化两部分:货架优化针对货物与货架两者的关系,对货物摆放位置进行优化;而路径优化主要寻找自动引导小车(automated guided vehicle,简称AGV)的最优路径.目前,大多的智能仓储优化仅对这两部分进行独立研究.在实际仓储应用中,只能以线性叠加的方式解决问题,导致问题的求解易陷入局部最优中.通过对智能仓储环节中各部分的关系进行耦合分析,提出了货位和AGV路径协同优化数学模型,将货架优化和路径规划归为一个整体;此外,提出了智能仓储协同优化框架的求解算法,包括货品相似度求解算法和改进的路径规划算法;并在以上两种算法的基础上,使用改进的遗传算法实现了货位路径协同优化.实验结果验证了所提出的智能仓储协同优化算法的有效性和稳定性.通过使用该算法,可有效提高仓储的出货效率,降低运输成本.



Abstract:The optimization of intelligent warehousing is generally divided into shelf optimization and path optimization. Shelf optimization considers the position of goods and shelves, and optimizes the placement of goods. Path optimization mainly seeks the optimal path planning for automatic guided vehicles. At present, most of the studies focus on these two scenarios independently. In the actual warehousing application, the problem can only be solved by linear superposition, which makes the solution easy to fall into the local optimum. Based on the coupling analysis of the relationship between various sections in the intelligent warehousing process, this study proposes a mathematical model of cooperative optimization of shelf and position, which combines shelf optimization and path planning as a whole. In addition, a cooperative optimization framework, including a product similarity solving algorithm and an improved path planning algorithm, is proposed. Based on the above two algorithms, an improved genetic algorithm is proposed for the cooperative optimization of shelf and path. The experimental results verify the effectiveness and stability of the intelligent warehousing cooperative optimization algorithm proposed in this study. By using this algorithm, it can improve the shipping efficiency of storage and reduce transportation costs..



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5944
相关话题/优化 智能 规划 实验 遗传

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 面向稀疏卷积神经网络的GPU性能优化方法
    摘要:近些年来,深度卷积神经网络在多项任务中展现了惊人的能力,并已经被用在物体检测、自动驾驶和机器翻译等众多应用中.但这些模型往往参数规模庞大,并带来了沉重的计算负担.神经网络的模型剪枝技术能够识别并删除模型中对精度影响较小的参数,从而降低模型的参数数目和理论计算量,给模型的高效执行提供了机会.然而 ...
    本站小编 Free考研考试 2022-01-02
  • 大规模路网图下关键词覆盖最优路径查询优化
    摘要:游客倾向于采用个性化的旅游路线,规划这样的路线需要综合考量路径长度、路径开销和路径覆盖的兴趣点.关键词覆盖最优路径查询(KOR)就是用于规划这样的路线的一类查询,其处理过程通常包括预处理和路径拓展.由于路网图规模的不断扩大,现有算法预处理所需内存开销急剧上升,由于内存不足,导致较大规模的路网不 ...
    本站小编 Free考研考试 2022-01-02
  • 面向异构融合处理器的性能分析、优化及应用综述
    摘要:随着异构计算技术的不断进步,CPU和GPU等设备相集成的异构融合处理器在近些年得到了充分的发展,并引起了学术界和工业界的关注.将多种设备进行集成带来了许多好处,例如,多种设备可以访问同样的内存,可以进行细粒度的交互.然而,这也带来了系统编程和优化方面的巨大挑战.充分发挥异构融合处理器的性能,需 ...
    本站小编 Free考研考试 2022-01-02
  • 面向移动Web应用的浏览器缓存性能度量与优化
    摘要:随着移动互联网的飞速发展,用户越来越多地通过移动设备访问Web应用.浏览器为Web应用提供基本的计算、渲染等运行时支撑,其缓存机制可以支持Web应用直接从本地而不是通过网络来获取可复用资源,不仅能够减少整体的执行时间从而提升应用加载速度,还能够减少网络流量使用和电池电量消耗,从而保证移动Web ...
    本站小编 Free考研考试 2022-01-02
  • 自主机器人多智能体软件架构及伴随行为机制
    摘要:自主机器人是一类由计算机软件控制的信息物理系统,如何支持该类机器人在开放环境下的有效和协调运行,是自主机器人控制软件(controlsoftwareofautonomousrobot,简称CSAR)研究与实践面临的一项重要挑战.基于组织理论的思想,采用Structure-in-5的组织架构模式 ...
    本站小编 Free考研考试 2022-01-02
  • Web应用前后端融合的遗传算法并行化测试用例生成
    摘要:Web应用测试用例生成并行化是提升Web应用测试生成效率的一个有效手段.Web应用的前后端分离、事件驱动等特性,导致传统的并行化技术难以直接应用于Web应用的测试用例自动生成中.因此,如何针对Web应用进行并行化测试用例生成,是一项具有挑战性的工作.将种群并行化计算引入到基于遗传算法的Web应 ...
    本站小编 Free考研考试 2022-01-02
  • 智能代码补全研究综述
    摘要:代码补全(codecompletion)是自动化软件开发的重要功能之一,是大多数现代集成开发环境和源代码编辑器的重要组件.代码补全提供即时类名、方法名和关键字等预测,辅助开发人员编写程序,直观提高软件开发效率.近年来,开源软件社区中源代码和数据规模不断扩大,人工智能技术取得了卓越进展,这对自动 ...
    本站小编 Free考研考试 2022-01-02
  • 森林优化特征选择算法的增强与扩展
    摘要:特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机 ...
    本站小编 Free考研考试 2022-01-02
  • 基于相似度驱动的线性哈希模型参数再优化方法
    摘要:哈希学习通过设计和优化目标函数,并结合数据分布,学习得到样本的哈希码表示.在现有哈希学习模型中,线性模型因其高效、便捷的特性得到广泛应用.针对线性模型在哈希学习中的参数优化问题,提出一种基于相似度驱动的线性哈希模型参数再优化方法.该方法可以在不改变现有模型各组成部分的前提下,实现模型参数的再优 ...
    本站小编 Free考研考试 2022-01-02
  • 人工智能赋能的数据管理、分析与系统专刊前言
    摘要:大数据时代,数据规模庞大,数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.专刊强调数据管理与人工智能的深度融合,研究人工智能赋能的数据库新技术和新型系统,包括两方面:(1)传统数据管理、数据分析技术及系统 ...
    本站小编 Free考研考试 2022-01-02