删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Web应用前后端融合的遗传算法并行化测试用例生成

本站小编 Free考研考试/2022-01-02

摘要:Web应用测试用例生成并行化是提升Web应用测试生成效率的一个有效手段.Web应用的前后端分离、事件驱动等特性,导致传统的并行化技术难以直接应用于Web应用的测试用例自动生成中.因此,如何针对Web应用进行并行化测试用例生成,是一项具有挑战性的工作.将种群并行化计算引入到基于遗传算法的Web应用前后端融合的测试用例生成中,通过线程池及调度逻辑设计、多浏览器进程管理及后端覆盖路径获取,实现种群个体在多浏览器上的并行化执行及基于后端路径覆盖的适应度值并行化计算,以更高效地生成Web应用的测试用例.实验结果表明:相对于Web应用的GA串行化测试用例生成方法,所提的并行化测试生成方法能够更充分地利用系统资源,极大地提升Web应用测试用例的生成效率.



Abstract:Parallelization of test case generation for Web applications is an effective way to improve the efficiency of test generation. Due to the characteristics of front-back end separation and event-driven of Web applications, the traditional parallelization technology is difficult to be applied to automatic test case generation of Web applications. Therefore, it becomes a challenging task to parallelize test case generation for Web applications. In this study, parallelized computing is introduced into the test case generation for Web applications based on GA. By means of the design of thread pool and scheduling logic, the management of the multi-browser process and the acquisition of the path coverage of back end code, the parallel execution of individuals on multiple browsers and the parallel computation of fitness values based on the back end path coverage are realized, making test case generation more efficiently. The experiment results show that compared with GA serialization test case generation, the proposed parallelization method can make full use of system resources and greatly improve the efficiency of test case generation for Web applications.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5955
相关话题/测试 计算 遗传 实验 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于在线性能测试的概念漂移检测方法
    摘要:概念漂移是动态流数据挖掘中一类常见的问题,但混杂噪声或训练样本规模过小而产生的伪概念漂移会引起与真实概念漂移相似的结果,即模型在线测试性能的不稳定波动,导致二者容易混淆,发生概念漂移的误报.针对流数据中真伪概念漂移的混淆问题,提出一种基于在线性能测试的概念漂移检测方法(conceptdrift ...
    本站小编 Free考研考试 2022-01-02
  • 面向众包数据清洗的主动学习技术
    摘要:传统方法多数采用机器学习算法对数据进行清洗.这些方法虽然能够解决部分问题,但存在计算难度大、缺乏充足的知识等局限性.近年来,随着众包平台的兴起,越来越多的研究将众包引入数据清洗过程,通过众包来提供机器学习所需要的知识.由于众包的有偿性,研究如何将机器学习算法与众包有效且低成本结合在一起是必要的 ...
    本站小编 Free考研考试 2022-01-02
  • 人工智能赋能的数据管理技术研究
    摘要:大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分 ...
    本站小编 Free考研考试 2022-01-02
  • 基于中间层的可扩展学习索引技术
    摘要:在大数据与云计算时代,数据访问速度是衡量大规模存储系统性能的一个重要指标.因此,如何设计一种轻量、高效的数据索引结构,从而满足系统高吞吐率、低内存占用的需求,是当前数据库领域的研究热点之一.Kraska等人提出使用机器学习模型代替传统的B树索引,并在真实数据集上取得了不错的效果,但其提出的模型 ...
    本站小编 Free考研考试 2022-01-02
  • 面向数据特征的内存跳表优化技术
    摘要:跳表作为数据库中被广泛采用的索引技术,优点在于可以达到类似折半查找的复杂度O(log(n)).但是标准跳表算法中,结点的层数是通过随机算法生成的,这就导致跳表的性能是不稳定的.在极端情况下,查找复杂度会退化到O(n).这是因为经典跳表结构没有结合数据的特征.一个稳定的跳表结构应该充分考虑数据的 ...
    本站小编 Free考研考试 2022-01-02
  • MAS环境中一种基于反馈可信度的多维信誉计算方法
    摘要:在分布式体系结构的MAS(multi-agentsystem)中,Agent之间通过彼此的交互,协调完成共同的任务,但是由于没有中心化的管理权威可以依赖,导致对网络中Agent信誉信息进行判断存在一定的困难.传统的基于评价反馈的信誉评估方法存在反馈评价属性信息利用不足以及缺少确保反馈评价信息可 ...
    本站小编 Free考研考试 2022-01-02
  • 对抗样本生成技术综述
    摘要:如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的, ...
    本站小编 Free考研考试 2022-01-02
  • HDFS 存储和优化技术研究综述
    摘要:HDFS(Hadoopdistributedfilesystem)作为面向数据追加和读取优化的开源分布式文件系统,具备可移植、高容错和可大规模水平扩展的特性.经过10余年的发展,HDFS已经广泛应用于大数据的存储.作为存储海量数据的底层平台,HDFS存储了海量的结构化和非结构化数据,支撑着复杂 ...
    本站小编 Free考研考试 2022-01-02
  • 多传感器辅助的WiFi信号指纹室内定位技术
    摘要:近年来,基于室内定位的应用服务越来越普及,吸引了大量的研究工作.其中,基于WiFi信号指纹的室内定位技术发展尤为迅速.但无线信号传输易受环境影响,会导致WiFi信号指纹定位存在偏差.为了提高定位精度并减小环境因素带来的不利影响,提出了智能手机内置传感器辅助WiFi信号指纹定位的方法,即利用智能 ...
    本站小编 Free考研考试 2022-01-02
  • ICOMDT:一个面向动态任务的交互计算模型
    摘要:近年来,包含动态任务的交互式系统得到了广泛的应用.基于现有对用户与动态任务交互的研究,提出一个面向动态任务的定量化可计算的交互模型ICOMDT,用于解释用户与动态任务的交互行为,并实现用户意图预测.更具体地,将ICOMDT应用于运动目标选择任务,设计了两个实验以验证模型的有效性.实验1收集用户 ...
    本站小编 Free考研考试 2022-01-02