摘要:近年来,随着信息技术的发展及物联网技术的兴起,出现了越来越多的持续监控应用场景,如智能交通实时监控、疾病实时监控、智能基础设施应用等.在这些场景中,如何对参与者持续分享的数据进行隐私保护面临重大挑战.差分隐私是一种严格和可证明的隐私定义,早期差分隐私研究大都基于一个大规模、静态的数据集做一次性的计算和发布.而持续监控下差分隐私保护需对动态数据做持续计算和发布.目前,持续监控下差分隐私保护是差分隐私领域新的研究热点之一.对持续监控下差分隐私保护的已有研究成果进行总结.首先,对该场景下差分隐私保护模型进行阐述;然后,重点介绍了持续监控下满足event级、user级和w-event级隐私保护的实现方案.在对已有研究成果深入对比分析的基础上,指出了持续监控下差分隐私保护的未来研究方向.
Abstract:With the development of information technologies and Internet of things (IoT) technologies,there are more and more scenarios under continual monitoring, such as transportation monitoring, disease monitoring, smart infrastructure etc. In these scenarios, how to protect the privacy of continuous sharing data is facing major challenges. Differential privacy is arigorous and provable privacy definition. Earlier research on differential privacy has focused on “one-shot” release on a static dataset. However, differential privacy under continual observation focuses on the continuous computationon the dynamic dataset. Now it has become one of the research hotspots. This study surveys the state-of-the-art techniqueson differential privacy under continual observation, and focuses on summarizing existing schemes that provide event-levelprivacy, user-levelprivacy, and w-event privacy. Following a comprehensive comparison and analysis of existing techniques, further research prospectsare put forward.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6042
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
持续监控下差分隐私保护
本站小编 Free考研考试/2022-01-02
相关话题/数据 计算 疾病 介绍 技术
移动边缘计算中资源受限的串行任务卸载策略
摘要:云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向大数据分析作业的启发式云资源供给方法
摘要:云计算已成为大数据分析作业的主流运行支撑环境,选择合适的云资源优化其性能面临巨大挑战.当前研究主要考虑大数据分析框架(如Hadoop,Spark等)的多样性,采用机器学习方法进行资源供给,但样本少容易陷入局部最优解.提出了大数据环境下基于负载分类的启发式云资源供给方法RP-CH,基于云资源共享 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02系统软件构造与验证技术专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5958 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向顺序存储结构的数据流分析
摘要:C程序中数组、malloc动态分配后的连续内存等顺序存储结构被大量使用,但大多数传统的数据流分析方法未能充分描述其结构及其上的操作,特别是在利用指针访问顺序存储结构时,传统的分析方法只关注了指针的指向关系,而未讨论指针可能发生偏移的数值信息,且未考虑发生偏移时可能存在越界的不安全问题,导致了对 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于代理重加密的云数据访问授权确定性更新方案
摘要:有越来越多的用户选择云为其进行存储、运算、共享等数据处理工作,因此云端数据量与日俱增,其中不乏敏感数据和隐私信息.如何对用户托管于云端的数据进行授权管理,保证数据机密性、访问授权有效性等至关重要.为此,提出一种基于代理重加密(proxyre-encryption,简称PRE)的云端数据访问授权 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向流数据分类的在线学习综述
摘要:流数据分类旨在从连续不断到达的流式数据中增量学习一个从输入变量到类标变量的映射函数,以便对随时到达的测试数据进行准确分类.在线学习范式作为一种增量式的机器学习技术,是流数据分类的有效工具.主要从在线学习的角度对流数据分类算法的研究现状进行综述.具体地,首先介绍在线学习的基本框架和性能评估方法, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向众包数据清洗的主动学习技术
摘要:传统方法多数采用机器学习算法对数据进行清洗.这些方法虽然能够解决部分问题,但存在计算难度大、缺乏充足的知识等局限性.近年来,随着众包平台的兴起,越来越多的研究将众包引入数据清洗过程,通过众包来提供机器学习所需要的知识.由于众包的有偿性,研究如何将机器学习算法与众包有效且低成本结合在一起是必要的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理技术研究
摘要:大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理、分析与系统专刊前言
摘要:大数据时代,数据规模庞大,数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.专刊强调数据管理与人工智能的深度融合,研究人工智能赋能的数据库新技术和新型系统,包括两方面:(1)传统数据管理、数据分析技术及系统 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于中间层的可扩展学习索引技术
摘要:在大数据与云计算时代,数据访问速度是衡量大规模存储系统性能的一个重要指标.因此,如何设计一种轻量、高效的数据索引结构,从而满足系统高吞吐率、低内存占用的需求,是当前数据库领域的研究热点之一.Kraska等人提出使用机器学习模型代替传统的B树索引,并在真实数据集上取得了不错的效果,但其提出的模型 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02