摘要:自然场景文本检测与识别研究对于从场景中获取信息有重要意义,而深度学习技术有助于提高文本检测与识别的能力.主要对基于深度学习的自然场景文本检测与识别方法和其研究进展进行整理分类、分析和总结.首先论述自然场景文本检测与识别的相关研究背景及主要技术研究路线;然后,根据自然场景文本信息处理的不同阶段,进一步介绍文本检测模型、文本识别模型和端到端的文本识别模型,并阐述和分析每类模型方法的基本思路和优缺点;另外,列举了常见公共标准数据集以及性能评估指标和方法,并对不同模型相关实验结果进行了对比分析;最后总结基于深度学习的自然场景文本检测与识别技术面临的挑战和发展趋势.
Abstract:Natural scene text detection and recognition is important for obtaining information from scenes, and it can be improved by the help of deep learning. In this study, the deep learning-based methods of text detection and recognition in natural scenes are classified, analyzed, and summarized. Firstly, the research background of natural scene text detection and recognition and the main technical research routes are discussed. Then, according to different processing phases of natural scene text information processing, the text detection model, text recognition model and end-to-end text recognition model are further introduced, in which the basic ideas, advantages, and disadvantages of each method are also discussed and analyzed. Furthermore, the common standard datasets and performance evaluation indicators and functions are enumerated, and the experimental results of different models are compared and analyzed. Finally, the challenge and development trends of deep learning-based text detection and recognition in natural scenes are summarized.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5988
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于深度学习的自然场景文本检测与识别综述
本站小编 Free考研考试/2022-01-02
相关话题/自然 信息 技术 路线 指标
面向众包数据清洗的主动学习技术
摘要:传统方法多数采用机器学习算法对数据进行清洗.这些方法虽然能够解决部分问题,但存在计算难度大、缺乏充足的知识等局限性.近年来,随着众包平台的兴起,越来越多的研究将众包引入数据清洗过程,通过众包来提供机器学习所需要的知识.由于众包的有偿性,研究如何将机器学习算法与众包有效且低成本结合在一起是必要的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于异构社交网络信息和内容信息的事件推荐
摘要:基于事件的社交网络使得事件推荐受到越来越多的关注.不同于其他推荐问题(如电影推荐等),事件推荐具有3类不同信息:用户构成的异构社交网络关系信息(在线社交网络和离线社交网络)、用户/事件的内容信息、用户对事件的隐式反馈信息.如何有效融合这些信息进行事件推荐是该领域****普遍关注的问题.提出一种 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理技术研究
摘要:大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于中间层的可扩展学习索引技术
摘要:在大数据与云计算时代,数据访问速度是衡量大规模存储系统性能的一个重要指标.因此,如何设计一种轻量、高效的数据索引结构,从而满足系统高吞吐率、低内存占用的需求,是当前数据库领域的研究热点之一.Kraska等人提出使用机器学习模型代替传统的B树索引,并在真实数据集上取得了不错的效果,但其提出的模型 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向数据特征的内存跳表优化技术
摘要:跳表作为数据库中被广泛采用的索引技术,优点在于可以达到类似折半查找的复杂度O(log(n)).但是标准跳表算法中,结点的层数是通过随机算法生成的,这就导致跳表的性能是不稳定的.在极端情况下,查找复杂度会退化到O(n).这是因为经典跳表结构没有结合数据的特征.一个稳定的跳表结构应该充分考虑数据的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于PSP_HDP主题模型的非结构化经济指标挖掘
摘要:随着经济活动数据的不断丰富,互联网平台上产生了大量的财经文本,其中蕴含了经济领域发展状况的影响因素.如何从这些财经文本中有效地挖掘与经济有关的经济要素,是实现非结构化数据在经济研究中应用的关键.根据人工构建非结构化经济指标的局限性,以及主题模型在非结构化经济指标挖掘中存在的问题,结合已有经济领 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02对抗样本生成技术综述
摘要:如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02HDFS 存储和优化技术研究综述
摘要:HDFS(Hadoopdistributedfilesystem)作为面向数据追加和读取优化的开源分布式文件系统,具备可移植、高容错和可大规模水平扩展的特性.经过10余年的发展,HDFS已经广泛应用于大数据的存储.作为存储海量数据的底层平台,HDFS存储了海量的结构化和非结构化数据,支撑着复杂 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02引入序列信息的残基相互作用网络比对算法
摘要:残基相互作用网络比对,对于研究蛋白质结构与功能的关系具有重要意义.在基于网络拓扑信息进行网络比对的MAGNA算法基础上,将蛋白质的序列信息(即残基匹配度)引入到其优化函数中,确定拓扑信息和序列信息对比对的影响程度,提出适合于残基相互作用网络比对的SI-MAGNA算法.实验结果表明,SI-MAG ...中科院软件研究所 本站小编 Free考研考试 2022-01-02多传感器辅助的WiFi信号指纹室内定位技术
摘要:近年来,基于室内定位的应用服务越来越普及,吸引了大量的研究工作.其中,基于WiFi信号指纹的室内定位技术发展尤为迅速.但无线信号传输易受环境影响,会导致WiFi信号指纹定位存在偏差.为了提高定位精度并减小环境因素带来的不利影响,提出了智能手机内置传感器辅助WiFi信号指纹定位的方法,即利用智能 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02