删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种面向异构众核处理器的并行编译框架

本站小编 Free考研考试/2022-01-02

摘要:异构众核处理器是面向高性能计算领域处理器发展的重要趋势,但其更为复杂的体系结构使得编程难的问题更加突出.针对这一问题,基于开源编译器Open64,提出了一种面向异构众核处理器的并行编译框架,将程序自动转换为异构并行程序.该框架主要包括4个模块:任务划分模块用来识别适合进行加速计算的程序段,实现了嵌套循环的多维并行识别方法;数据布局模块完成数据在主存和SPM之间的布局,实现了数组边界分析和指针范围分析;传输优化模块实现了数据传输合并、传输外提、打包传输、数组转置等多种数据传输优化方法;收益评估模块在构建代价模型的基础上实现了一种动静结合的收益评估方法.并且,基于SW26010处理器,对该编译框架进行了实现,测试结果表明,该编译框架能够实现一些程序以面向异构众核结构的并行变换,且获得较好的加速效果.



Abstract:Heterogeneous many-core processors become an important trend in high-performance computing area, but the issue that the sophisticated architecture complicates the programming is more significantly. To solve this problem, this study proposes a parallelizing compilation framework for heterogeneous many-core processors based on the open source Open64 compiler, automating the transformation from a sequential program to heterogeneous parallel code. The framework mainly comprises a work scheduling module that identifies the parallelizable regions and achieves a multi-dimensional parallelization recognition for nested loops; a data mapping module that maps data between the main memory and SPM and realizes array boundary analysis and pointer range analysis; a transmission optimizing module that implements optimizations by merging, hoisting and packaging data transmission, and transposing array; and a performance estimation module that proposes a dynamic-static hybrid method to analyze benefit based on the cost model for SW26010. The compilation framework is implemented on top of Sunway SW26010 processors, and experimental evaluations are conducted on numerous benchmarks. The experimental results show that the proposed framework can parallelize these applications and obtain a promising performance improvement on heterogeneous many-core platforms.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5370
相关话题/程序 优化 数据 计算 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 分布式多数据流频繁伴随模式挖掘
    摘要:多数据流频繁伴随模式是指一组对象较短时间内在同一个数据流上伴随出现,并在之后一段时间以同样方式出现在其他多个数据流上.现实生活中,城市交通监控系统中的伴随车辆发现、基于签到数据的伴随人群发现、基于社交网络数据中的高频伴随词组发现热点事件等应用都可以归结为多数据流频繁伴随模式发现问题.由于数据流 ...
    本站小编 Free考研考试 2022-01-02
  • 智能数据管理与分析技术专刊前言
    摘要:数据管理与智能计算的深度融合已经成为大数据时代顺利前行的迫切需求.智能数据管理旨在“为数据增添智能”,是数据科学与技术的重要基石,更是大数据产业蓬勃发展的关键支撑.一方面,将新一代人工智能方法应用于先进数据管理技术,尝试探索和突破智能数据管理与分析的理论体系、技术方法及系统平台,已经成为数据管 ...
    本站小编 Free考研考试 2022-01-02
  • 面向云应用系统的容错即服务优化提供方法
    摘要:通过提供高效且持续可用的容错服务以保障云应用系统的可靠运行是至关重要的.采用容错即服务的模式,提出了一种优化的云容错服务动态提供方法,从云应用组件的可靠性及响应时间等方面描述云应用容错需求,以常用的复制、检查点和NVP(N-versionprogramming)等容错技术为基础,充分考虑容错服 ...
    本站小编 Free考研考试 2022-01-02
  • 大规模RDF图数据上高效率分布式查询处理
    摘要:知识图谱是智能数据的主要表现形式,随着知识图谱领域的不断发展,大量的智能图数据以资源描述框架(resourcedescriptionframework,简称RDF)形式发布出来.RDF图上的SPARQL查询语义对应于图同态,是一个NP-完全问题.因此,如何使用分布式方法在大规模RDF图上有效回 ...
    本站小编 Free考研考试 2022-01-02
  • 基于角色发现的动态信息网络结构演化分析
    摘要:动态信息网络是当前复杂网络领域中极具挑战的新问题之一,对其动态的演化过程进行研究,有助于分析网络结构、理解网络特性、发现网络中潜在的信息及演化规律,具有重要的理论意义与应用价值.基于网络结构本身量化表示的复杂性以及网络演化时序、复杂、多变的挑战,使用角色来量化动态网络的结构,并对模型进行分析, ...
    本站小编 Free考研考试 2022-01-02
  • 基于时效规则的数据修复方法
    摘要:数据时效性是影响数据质量的重要因素,可靠的数据时效性对数据检索的精确度、数据分析结论的可信性起到关键作用.数据时效不精确、数据过时等现象给大数据应用带来诸多问题,很大程度上影响着数据价值的发挥.对于缺失了时间戳或者时间不准确的数据,精确恢复其时间戳是困难的,但可以依据一定的规则对其时间先后顺序 ...
    本站小编 Free考研考试 2022-01-02
  • 劣质数据上代价敏感决策树的建立
    摘要:代价敏感决策树是以最小化误分类代价和测试代价为目标的一种决策树.目前,随着数据量急剧增长,劣质数据的出现也愈发频繁.在建立代价敏感决策树时,训练数据集中的劣质数据会对分裂属性的选择和决策树结点的划分造成一定的影响.因此在进行分类任务前,需要提前对数据进行劣质数据清洗.然而在实际应用中,由于数据 ...
    本站小编 Free考研考试 2022-01-02
  • 基于网格耦合的数据流聚类
    摘要:随着越来越多的应用程序产生数据流,数据流聚类分析的研究受到了广泛关注.基于网格的聚类通过将数据流映射到网格结构中形成数据概要,进而对概要进行聚类.这种方法通常具有较高的效率,但是每个网格独立处理,没有考虑网格之间的相互影响,因此聚类质量有待提高.在聚类过程中不再独立处理网格,而是考虑了网格之间 ...
    本站小编 Free考研考试 2022-01-02
  • 差分隐私的数据流关键模式挖掘方法
    摘要:频繁模式挖掘是数据挖掘的重要任务之一,在数据流上挖掘简洁的关键模式比频繁模式更有优势,因为关键模式既可以避免频繁模式里包含的冗余信息以减少内存存储空间,又可以高效无损地提取频繁模式.但是由于相邻时间戳的统计信息可以作为背景知识增强攻击者的推理能力,所以从包含个人信息的数据流中挖掘关键模式比静态 ...
    本站小编 Free考研考试 2022-01-02
  • 分布式异构数据库数据同步工具
    摘要:一般而言,读写分离技术可以解决当前大数据环境下的读写速度失配的部分问题,但是现有的读写分离技术主要是针对同构数据库的解决方案.由于存储结构的不一致,由行式存储数据库和列式存储数据库构成的异构分布式数据库系统相较于同构分布式数据库系统在数据同步的过程中就会面临格式转换、同步速度不匹配等诸多难题. ...
    本站小编 Free考研考试 2022-01-02