1. 天津大学 化工学院,天津 300072;
2. 天津大学 合成生物学前沿科学中心和系统生物工程教育部重点实验室,天津 300072;
3. 天津大学 天津化学化工协同创新中心合成生物学研究平台,天津 300072;
4. 廊坊师范学院 生命科学学院,河北 廊坊 065000
收稿日期:2020-05-06;接收日期:2020-06-10;网络出版时间:2020-06-16
基金项目:国家自然科学基金(No. 21621004),天津市自然科学基金(No. 19JCQNJC09200),天津大学自主创新基金(Nos. 0903065083,0903065084)资助
摘要:微生物燃料电池(Microbial fuel cell,MFC)作为一种生物电化学装置,在可再生能源生产和废水处理方面的巨大潜力已引起广泛关注。然而MFC面临输出功率低、欧姆内阻高以及启动时间长等问题,极大限制了其在实际工程中的应用。MFC中阳极是微生物附着的载体,对电子的产生及传递起着关键作用,开发优质的生物电极已发展成为改善MFC性能的有效途径。共轭聚合物具有成本低、电导率高、化学稳定性及生物相容性好等优点,利用共轭聚合物修饰生物电极结构,可以实现大比表面积、缩短电荷转移路径,从而实现高效生物电化学性能。同时,纳米级共轭聚合物包覆细菌,可以使细菌产生的电子有效地传递到电极。文中综述了最近报道的共轭聚合物在MFC中的应用,重点介绍了共轭聚合物修饰的MFC阳极,系统分析了共轭聚合物的优点及局限性,以及这些高效复合生物电极如何解决MFC应用中存在的低输出功率、高欧姆内阻及长启动时间等问题。
关键词:微生物燃料电池产电微生物电极胞外电子传递
Construction of conjugated polymer-exoelectrogen hybrid bioelectrodes and applications in microbial fuel cells
Qian Ding1,2,3, Yingxiu Cao1,2,3, Feng Li1,2,3, Tong Lin4, Yuanyuan Chen1,2,3, Zheng Chen1,2,3, Hao Song1,2,3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China;
3. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
4. College of Life Science, Langfang Normal University, Langfang 065000, Hebei, China
Received: May 6, 2020; Accepted: June 10, 2020; Published: June 16, 2020
Supported by: National Natural Science Foundation of China (No. 21621004), Natural Science Foundation of Tianjin City, China (No. 19JCQNJC09200), Independent Innovation Fund of Tianjin University (Nos. 0903065083, 0903065084)
Corresponding author: Hao Song. E-mail: hsong@tju.edu.cn.
Abstract: Microbial fuel cell (MFC) is a bioelectrochemical device, that enables simultaneous wastewater treatment and energy generation. However, a few issues such as low output power, high ohmic internal resistance, and long start-up time greatly limit MFCs' applications. MFC anode is the carrier of microbial attachment, and plays a key role in the generation and transmission of electrons. High-quality bioelectrodes have developed into an effective way to improve MFC performance. Conjugated polymers have advantages of low cost, high conductivity, chemical stability and good biocompatibility. The use of conjugated polymers to modify bioelectrodes can achieve a large specific surface area and shorten the charge transfer path, thereby achieving efficient biological electrochemical performance. In addition, bacteria can be coated with nano-scale conjugated polymer and effectively transfer the electrons generated by cells to electrodes. This article reviews the recently reported applications of conjugated polymers in microbial fuel cells, focusing on the MFC anode materials modified by conjugated polymers. This review also systematically analyzes the advantages and limitations of conjugated polymers, and how these composite hybrid bioelectrodes solve practical issues such as low energy output, high inner resistance, and long starting time.
Keywords: microbial fuel cellexoelectrogenselectrodeextracellular electron transfer
人类面临两个重大挑战,能源匮乏与环境污染问题。微生物燃料电池(Microbial fuel cell,MFC)作为一项新技术应运而生,该技术能够有效解决能源和水污染方面的难题,受到广泛的关注[1-3]。但是,目前MFC的输出功率密度偏低,仍存在包括能量密度、库伦效率、循环寿命和循环稳定性等在内的诸多电化学性能问题。细菌和电极之间较低的胞外电子传递(Extracellular electron transfer,EET)效率,是限制MFC实际应用的主要瓶颈[4]。由于阳极是EET的电子受体,因此阳极材料的特性,例如大比表面积、高电导率、良好的化学稳定性和生物相容性,对于实现高性能MFC具有决定性和关键性作用。因此,迫切需要开发新技术来解决上述问题。典型的MFC是由一个阳极室和一个阴极室组成,它们通常被质子交换膜(Proton exchange membrane,PEM)隔开,通过外部电路进行电路连接(图 1)。
图 1 典型的两室MFC的示意图 Fig. 1 Schematic of a typical two-chamber MFC. |
图选项 |
共轭聚合物是具有共轭π–键的高分子,经化学或电化学氧化还原反应(所谓的“掺杂”)后可获得高导电性材料[5],这是一种可逆过程,这种可逆的掺杂-去掺杂特性赋予导电聚合物以先进的性能。共轭聚合物既具有如金属般良好的导电性,又具有有机高分子材料的柔韧机械性和可再加工性,使其成为各种能源设备的有望候选材料。据报道,导电聚合物链能够吸附培养基中的蛋白质和其他生物分子,并且能刺激生物膜的形成影响微生物的生长[6],因此已被广泛用作MFC的阳极材料[7-8]。此外,纳米级共轭聚合物较大的比表面积、较高的电导率和较好的柔韧性意味着无需额外掺入导电添加剂或粘合剂,可直接用作电极或活性材料,从而降低了电极和电解质之间的界面阻抗。对于在MFC中的应用,纳米聚合物还具有另一个特性,其一维结构可以与细胞膜发生物理相互作用或直接穿过细胞膜插入细胞中,从而可以使细胞进行直接胞外电子传递[9]。导电共轭聚合物中典型例子,包括聚苯胺(Polyaniline,PANI)、聚吡咯(Polypyrrole,PPy)、聚噻吩(Polythiophene,PTh)、聚(3, 4-乙烯二氧噻吩) (Poly (3, 4-ethylenedioxythiophene),PEDOT)和聚多巴胺(Polydopamine,PDA)等(图 2)。本文主要综述了最近报道的共轭聚合物及新型复合物修饰的MFC复合生物电极,包括聚合物改性碳基材料、碳纳米管、石墨烯、金属及金属氧化物等,阐述了其对MFC产电性能的影响,对其在MFC应用中存在的问题及研究前景进行了探讨。
图 2 共轭聚合物典型代表的化学结构图(聚苯胺、聚吡咯、聚噻吩、聚(3, 4-乙烯二氧噻吩)、聚多巴胺) Fig. 2 Chemical structure diagrams of conjugated polymers' typical representatives (polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh), poly (3, 4-ethylenedioxythiophene) (PEDOT), polydopamine (PDA)). |
图选项 |
1 共轭聚合物-碳材料复合生物电极碳材料是目前MFC研究中使用最广泛的阳极材料,包括碳布(Carbon cloth,CC)、碳纸(Carbon paper,CP)、石墨毡(Graphite felt,GF)、石墨纸、碳毡(Carbon felt,CF)等。尽管它们稳定、相对便宜并且显示出良好的导电性,但它们固有的疏水性不利于微生物的粘附,导致电子传递能力差,并且微生物分泌的物质对表面的污染可能会进一步影响了微生物燃料电池的性能[10-11],如代谢废物和营养物质的不良传质以及细菌定殖的表面积降低,表现为电流衰减和寿命缩短,这些因素最终导致未经修饰的阳极电极功率输出较低。聚合物因其较强的导电性、环境稳定性和简单的合成而被广泛用于其改性(图 3A–B)。
图 3 共轭聚合物改性复合生物电极构建方法及产电机理示意图(A, B:共轭聚合物/碳布复合[19, 25];C, D:共轭聚合物/CNT复合[26, 32];E, F, G:共轭聚合物/GO复合[7, 16, 46];H, I:共轭聚合物/金属氧化物复合[64, 71]) Fig. 3 Mechanisms of EET enhancement by conjugated polymer modification electrode material and modification methods. (A) More biocompatible electrode surface by VA-PANI modification supports the EET. PANI nanofibers was probably treated as solid-state mediator to receive and transport electron from Shewanella by Mtr pathway or soluble mediator to electrode (IDET). Red arrows indicate the electron transfer direction, Mtr represents the out-membrane EET conduit, pentagram indicates the soluble mediator (such as riboflavin)[19]. (B) PANI nanoflowers modified CC[25]. (C) PANI/CNT composite. The morphology of as-prepared PANI nanoflower with their characterized chemical interactions facilitated the charge transport processes[26]. (D) Schematic of the growth of VCNTs on the CFs and EET mechanism for the VCNTs-PPy-Pitch-CF anode. The electricigens suspend from the anode surface, anchored by nanowires interactions with VCNTs and other electricigens. The arrow indicates the microbial nanowires[32]. (E) Schematic diagram of the preparation of the G/PEDOT hybrid electrode and its electrostatic interaction with E. coli cells[46]. (F) Proposed mechanism for the preparation of the rGO/PPy composite. The pyrrole monomer effectively adsorbed over the negatively charged GO sheets through electrostatic and π-π interactions was polymerized into polypyrrole in its adsorbed state[16]. (G) Improved performance with polyaniline/graphene(PANI/rGO) modified anode. Electrogenic biofilm formation rate is 2.4 times quicker after anode modification and accelerated biofilm formation[7]. (H) Synthetic routes to cauliflower-like PPy@MnO2-CC electrodes[64]. (I) Schematic electron-transfer mechanisms of PDA-modified MoO2/Mo2C(HD-Mo2C/MoO2/CF)[71]. |
图选项 |
1.1 共轭聚合物修饰碳电极CC由于其优异的化学稳定性和良好的导电性常用于MFC的阳极。CC电极(主要由光滑的石墨微纤维组成)对于电活性细菌的生物相容性较低,为了改变这种情况,可以通过制备纳米阵列结构进行电极表面的纳米材料修饰以扩大生物相容性界面[12-15]。聚吡咯[16-17]等导电聚合物常被用来对CC进行改性[18]。然而,这类纳米结构通常在电极表面随机排列,限制了细胞与聚合物之间的相互作用机会,因此很难最大化提高EET效率。Yong等[19]使用掺杂酒石酸(TA)调节电极表面聚苯胺纳米结构的策略,获得了垂直排列和高导电性的纳米纤维,促进生物膜的形成和增加电极与MtrCAB系统途径相互作用的机会,PANI纳米纤维被视为固态介体,可以通过Mtr途径接收或传输希瓦氏菌Shewanella oneidensis产生的电子,也可以将可溶性介体传递至电极,进而提高了EET效率。PEDOT是有机导电聚噻吩的重要衍生物,由于其制造成本低、电导率高和透明性好而被广泛用作电极材料[20]。用电化学聚合的方法在碳布电极制备PEDOT/CC复合电极,PEDOT表面具有丰富的多孔结构,与未修饰的阳极相比,PEDOT阳极修饰功率密度提高了43%,最大功率密度高达140 mW/m2[21]。与其他已知的导电聚合物相比,PEDOT具有独特的逐渐氧化和还原的特性,这意味着电荷状态和PEDOT电位之间几乎存在线性关系,在其中它既可以充当电子供体,也可以充当电子受体[22],PEDOT修饰的阳极多孔结构增加了可用的电化学活性位点,提高了电子传输速率,降低了阳极体系内阻。
用纳米级和微米级的三维(3D)材料修饰阳极表面也是一种增强表面电子转移和生物膜生长机制的可行方法。用脉冲电压技术在碳纤维布的表面上制造长度为230 nm的刷状聚苯胺(Brush-like PANI,BL-PANI)纳米线阵列[23],并将其作为阳极材料以改善MFC的输出功率,与普通的PAN/CC和CC相比,BL-PANI改性的碳布阳极输出功率分别提高了36.1%和58.1%,氧化还原的范围显示出BL-PANI和PANI改性后阳极电容不同,BL-PANI改性后的阳极具有更高的比表面积,由于具有良好的形貌,因此形成了高比表面积高电容。高比表面积、有效的电荷转移途径、足够的氧化还原电势是提高功率密度的关键因素,这为MFC生物阳极的制造进一步创新提供范例。掺杂不同的酸是提高PANI电导率的最有效方法[24],基于此,Yong等[25]在CC表面用原位聚合的方式组装PANI花状纳米结构,该方法可通过调节苯胺单体的浓度来控制PANI纳米结构的形态。利用PANI纳米花(Nanoflower,NF)修饰电极作MFC阳极,修饰后的阳极比原始CC的输出功率提高了约6.5倍。分析PANI/NF改善MFC性能的潜在机理为,在中性条件下带正电荷的PANI可以吸引带负电荷的细菌细胞,从而提高细菌的负载能力和细胞外电子转移(EET)效率。PANI修饰改善电极的生物相容性[9, 26],大量的细胞与PANI修饰的电极结合。综上所述,导电性PANI纳米花修饰物增加了电极的比表面积,改善了阳极的生物相容性,直接促进了细胞与电极之间的电子转移,从而提高了MFC的性能。文中涉及的共轭聚合物改性的生物复合电极如表 1所示。
表 1 共轭聚合物修饰的MFC复合生物电极产电性能对照表Table 1 Enhanced MFC anode performance by conjugated polymer modified bioelectrode
Anodematerials | Size (cm2) | Source of inoculation | Reactor configuration | Performance | Reference | |
Pmax (mW/m2) | Lmax (A/m2) | |||||
BL-PANI-CC | 8.0 | Mixed culture | Double Chamber | 567.2 | / | [23] |
SS-Ps /PANI | 3.5 | Mixed culture | Single Chamber | 780±110 | / | [59] |
SSFFs/PANI | 6.5 | Domestic wastewater | Double Chamber | 360 | 1.49 | [50] |
PANI/Gr-CC | 7.0 | Effluent of MFCs | Single Chamber | 884 | / | [13] |
TA /PANI-CC | 4.0 | S. oneidensis MR-1 | Double Chamber | 490 | / | [19] |
NF/PANI-CC | 4.0 | S. oneidensis MR-1 | Double Chamber | 388.6 | 0.20 | [25] |
HD-Mo2C/MoO2/CF | / | Escherichia coli | Single Chamber | 1 640±90 | ~0.10 | [71] |
PPy/SS | 8.8 | Anaerobic granular sludge | Single Chamber | 1 190.9 | / | [56] |
PPy/VCNTs/CFs | / | Wastewater | Single Chamber | 1 876.6 | 15 | [32] |
PEDOT/MnO2/CF | / | S. oneidensis MR-1 | Double Chamber | 1 534±13 | 3.22 | [65] |
PPy/GO/CF | 17.0 | S. oneidensis MR-1 | Double Chamber | 1 326 | / | [44] |
NiO@PANI-CF | / | Domesticated sludge | Double Chamber | 1 078 | / | [73] |
PPy@MnO2-CC | 5.2 | Mixed bacterial culture | Double Chamber | 2 139.7±17.5 | / | [64] |
Gr/PEDOT-CP | 10.0 | Escherichia coli | Double Chamber | 873 | / | [46] |
GO/PANIOS | 4.0 | S. oneidensis MR-1 | Double Chamber | 381 | 798 | [41] |
PPy-CNT/CF | / | S. oneidensis MR-1 | Double Chamber | 287 | / | [31] |
PANI/MWCNT/GF | 6.5 | S. oneidensis MR-1 | Double Chamber | 257 | / | [33] |
表选项
1.2 共轭聚合物与纳米碳材料复合修饰碳电极1.2.1 共轭聚合物与碳纳米管的复合碳纳米管(Carbon nanotube,CNT)具有独特的导电性和结构特性,是一种具有良好应用前景的材料[27-28]。尽管CNT对细胞具有一定的生物毒性,可能会抑制细菌繁殖甚至杀死细胞[29],可通过调节CNT的剂量与其他导电聚合物偶联,与其他官能团接枝来降低其生物毒性[30],这在CNT阳极改性中的应用十分广泛(图 3C–D)。
在CNT中掺入PPy制备的复合生物电极具有每种成分的优异性能,并具有协同作用。Roh等[31]采用原位化学聚合将聚吡咯掺杂在CNT上,CNT-聚合物随后沉积在CF阳极上,与未改性的CF电极相比,其功率密度提高了36%。不过该方法将碳纳米管溶液直接涂覆到碳材料上,CNT很可能被树脂包封并无序排列,难以迅速收集电子并输出到阳极,没有充分发挥CNT的高电导率。Zhang等[32]利用化学气相沉积方法制备了垂直生长的碳纳米管(Vertical carbon nanotubes,VCNTs),具有良好正电性和生物相容性的PPy分布在VCNTs的表面上,吸收了大量的产电菌,避免了产电菌与CNT之间的直接接触,改性的碳纤维复合材料可以充分发挥其优势,获得的最大功率密度为1 876.62 mW/m2,比未改性的碳纤维刷阳极高约2.63倍。
Zhang等[33]和Liang等[34]将多壁碳纳米管(Multi-walled carbon nanotube,MWCNT)与阳极生物膜混合,提出碳纳米管混合生物膜概念,多壁碳纳米管增加复合生物膜的电导率,增强生物膜的电子转移速率和底物扩散速率,缩短电池启动时间,复合生物膜具有长期稳定性和耐久性。Cui等[33]在石墨毡表面电聚合PANI,并通过电泳沉积MWCNT,制造复合阳极(MWCNT/PANI/GF),最大功率密度达257 mW/m2,与原始GF和PANI/GF电极相比,其功率密度分别提高3.4倍和1.9倍。先前的研究显示在GF上修饰PANI,PANI仅能覆盖GF的1–1.5 mm厚外层,显然位阻阻碍了苯胺向GF的内部作用,该研究采用的电化学聚合方法会动态改变施加的电势,从而产生足够的能量来克服空间位阻,苯胺可至4 mm厚GF的内部,电聚合后的PANI/GF表面被质子化而带正电,通过电泳施加阳极电流将带有羧基的MWCNT悬浮液均匀吸附到PANI/GF表面。通过电沉积在石墨纤维上引入了PANI层,扫描电镜显示PANI层质地粗糙且疏松,包含许多纳米纤毛。改性后GF复合阳极的比表面积、亲水性和电导率均显著提高,PANI和MWCNT可控、稳定、无粘结剂地改性大孔GF表面,并且易于放大,制备简单,可以很好地用作大规模MFC系统的低成本MFC阳极。
1.2.2 共轭聚合物与石墨烯的复合近年来石墨烯(Gr)的兴起对碳材料MFC的研究产生了重大影响。石墨烯及其衍生物(氧化石墨烯(GO)、还原氧化石墨烯(rGO)、官能化石墨烯等)具有出色的化学和物理性能,包括高机械强度,良好的电子传导性,高比表面积和合适的生物粘附性能[35-36],逐渐成为MFC中阳极的主要材料。此外纳米管和纳米带的石墨烯复合电极在燃料电池中具有巨大潜力[37-39],纳米结构显著提高细菌外膜细胞色素与电极之间的EET效率[40]。尽管如上所述石墨烯具有很多优点,但是各个石墨烯片之间的堆叠明显减小其表面积。大多数产电细菌带负电荷,石墨烯也具有负电荷,细菌和石墨烯之间产生静电排斥力,减缓石墨烯电极对细菌的吸附速率,降低石墨烯表面细菌总量。共轭聚合物已被广泛用于石墨烯的改性,其复合材料在MFC系统中的应用十分广泛(图 3E–G)。
Huang等[13]利用PANI和石墨烯修饰氧化CC得到复合阳极。测得PANI/Gr/CC阳极功率密度为(884±96) mW/m2,比碳布阳极MFC的功率密度高1.3–1.9倍。分析表明,石墨烯可以改善直接电子转移(Direct electron transfer,DET),PANI可以改善DET和介导的电子转移(Mediator electron transfer,MET),PANI/Gr电极对Shewanella oneidensis MR-1的DET和MET具有协同作用,在改性生物电极方面做了很多研究,但是,繁琐的物理和化学制备程序限制了其应用,包括复杂的化学石墨烯合成(化学氧化和剥离、化学气相沉积等)和电极表面改性。因此,开发快速而简单的制备策略具有重要意义。Sun等[41]提出了一步原位方法制备(GO/PANIOS)混合电极,构建了由石墨纸电极(工作电极,阳极)和铂丝电极(对电极)组成的两电极系统。圆柱形硼硅酸盐玻璃瓶用作电解池,水溶液含0.1 mol/L硫酸和0.05 mol/L苯胺。通过使用直流电源供应器向双电极系统施加10 V电压,以同时进行GO剥离和苯胺聚合,所制备的电极表现出优异的能量收集性能。通过两种制备方法实验对比,普通法制备的GO/PANI复合电极与一步法制备的GO/PANIOS电极,最大电压分别为200 mV (740 mA/m2)、319 mV (798 mA/m2),最大功率密度分别为328 mW/m2、381 mW/m2。一步法原位电化学聚合制备复合电极,不仅具有易于制造的独特优势,还具有更好的MFC性能。
聚吡咯是一种环境友好的导电材料,聚合物侧链中大量的α-β'偶联可能导致结构紊乱并限制其电化学响应时间[42]。基于此,其在MFC中的应用主要是复合形式。通过在石墨烯毡(GF)电极上电合成聚吡咯/氧化石墨烯(GO)复合物。用复合材料涂覆的石墨毡在各种性能上均有明显提高,包括比表面积、电导率、生物相容性和稳定性[43],其最大功率密度可达1 326 mW/m2[44]。这是因为PPy/GO复合材料均匀地生长在纤维表面上,类似于具有多孔的皱纹纸结构,与单独用PPy或石墨烯修饰电极相比,用PPy/GO修饰的GF电极比表面积显著增加,得到的PPy/GO复合生物电极具有开放的多孔结构,便于更多生物利用其表面活性位点,发生氧化还原反应,改性阳极材料不仅提高产电量,而且为MFC提供长期稳定性。此外,PEDOT骨架带正电[45],可以与带负电的细菌发生静电相互作用,从而促进生物膜形成。通过恒电流电聚合导电性聚合物PEDOT修饰石墨烯与碳纸的表面,制造用于MFC的Gr/PEDOT杂化阳极,带负电的细菌和带正电的PEDOT主链之间的静电相互作用,在杂化阳极上形成致密的生物膜。Gr/PEDOT/CP电极产生的最大功率密度为873 mW/m2,循环伏安法和电化学阻抗谱分析表明,Gr/PEDOT混合阳极具有更大的活性表面积和更低的电荷转移电阻[46]。
2 共轭聚合物-金属复合生物电极在电子传输过程中,金属及金属氧化物可作为传输中间体,对微生物具有吸附作用。以聚合物/金属复合材料修饰MFC阳极,既降低胞外电子传递阻力,又增强电极生物相容性,从而获得较好的电化学性能[47]。
2.1 共轭聚合物修饰金属材料Pocazoni等[48]提出不锈钢(Stainless steel, SS)可用于开发MFC高效阳极。但是,SS许多固有的特性可能会影响其大规模应用[49]。SS具有高耐电荷转移性、高活化超电势、疏水性,MFC中SS阳极的最大挑战是其生物相容性差[50],在复杂的介质中易被腐蚀[51]。已有许多表面修饰策略来提高SS的生物相容性,如通过火焰或热处理氧化在SS板的表面上形成氧化铁纳米颗粒,通过浸渍、焦糖化和热解的多步沉积工艺在SS板的表面上制造了薄碳层[52-54]。然而,这些改性方法对于提高SS在MFC中的耐腐蚀性却很少有研究,因此,寻找有效的改进方法以进一步提高其性能对于SS在MFC中的应用至关重要[50-55](图 3H–I)。
Pu等[56]通过原位电化学氧化方法在SS板上沉积聚吡咯膜(PPy/SS),并研究其在MFC中作为阳极的性能。PPy/SS表面非常粗糙,并且具有许多多孔微结构,电极表面附近的微生物可以通过接触这些粗糙而多孔的结构将电子转移到电极上[57]。另外,较高的电极电容,生物相容性和比表面积可以增强电子转移能力[58]。SS耐腐蚀性和生物相容性大大提高,以PPy/SS为阳极的MFC最大功率密度达到1 190.94 mW/m2,比裸露的SS阳极功率密度高29倍[56]。PANI作为一种MFC阳极涂层材料,很少用于修饰SS电极,因为其性能基础不确定。仅有一项研究通过化学和电化学氧化聚合反应改性了一种具有PANI粗糙表面的SS纤维毡(SSFF)[50]。PANI改性后的SSFF阳极具有较大的电活性表面积与良好的生物相容性,提高功率输出同时降低电池内阻。然而SSFF的表面特性可能会限制获得均一的PANI表面,无法确保阳极的最佳性能。基于此,Jayesh等[59]采用恒电流聚合法使用聚苯胺改性不锈钢板(SS-Ps)作为MFC阳极,其成本低廉,在SS-Ps上产生高度均匀且粘附的导电PANI涂层,能够有效促进微生物生长,保持电池长期稳定,最大功率密度可达约780 mW/m2。该实验探究了酸的种类与浓度、苯胺单体的浓度、聚合点位的不同等对形成聚苯胺涂层的性能有很大的影响,选择合适的聚合条件对制备高性能涂层聚苯胺至关重要,为MFC阳极制备条件的选择提供了较为重要的指导作用。
2.2 共轭聚合物与金属氧化物复合修饰碳电极金属氧化物可以制备成具有各种结构和孔隙度的材料,其对宿主细菌具有较强较高的生物活性[41, 60-61],常被用作涂层来修饰碳毡并减轻生物阳极的耐电性[62]。电活性细菌产生的质子会使生物膜底部的pH值降低,因此金属氧化物层可能会被破坏,这将导致生物阳极的电容损失并限制MFCs生物电的产生[63]。保护金属氧化免受微生物代谢产物的破坏,对于MFC的生物电的产生和长期运行至关重要。
二氧化锰(MnO2)是一种廉价且更易获得的过渡金属氧化物,具有较高的理论电容和良好的生物相容性[62]。MnO2的低电子电导率导致不良的倍率性能,从而限制了MFC的电化学性能。基于此,许多工作集中在探索和制造具有石墨烯,碳纳米管或导电聚合物的MnO2复合阳极上。Zhao等[64]提出了用PPy改性MnO2,制备了3D花椰菜状聚吡咯@二氧化锰(PPy@MnO2)复合生物电极,通过电沉积技术在CC上构造出(PPy@MnO2–CC)复合阳极,制备的PPy@MnO2的功率密度为(2 139.7±17.5) mW/m2,产生的面积电容为(1 120±12.8) mF/cm2,比裸露的CC阳极高出3.58倍和4.84倍,这得益于独特的花椰菜花结构,电化学分析表明3D架构的活性中心,促进细菌电荷转移,其良好的导电性,提高了电子的转移效率并降低了扩散阻力。活性位点数量增多促进阳极电容增加,增强MFC的功率输出。
电活性生物膜中的电子转移效率是生物电化学系统中生物电输出能力的限制因素。有人提出用MnO2涂层作为电子穿梭介导微生物EET,但MnO2的导电性差阻碍了MFC生物阳极中的EET。为了解决这个问题,通过在MnO2中插入PEDOT中间层,制备了PEDOT/MnO2/CF混合阳极,大幅提高MET电子转移效率,达到最高的电子传输效率((6.3±0.2)×10–9 mol/(cm2·s1/2))和最高电容(4.78 F),远高于裸CF生物阳极((1.50±0.04)×10–9 mol/(cm2·s1/2)和0.42 F),其最大功率密度达到1 534 mW/m2,比裸碳毡阳极(972 mW/m2)高出约57.7%[65]。PEDOT修饰后的MnO2充当了电子介体,各种膜外细胞色素介导的EET发生在电活性生物膜的电极表面和细菌的界面处。介体存在于电活性生物膜和电极的界面处,介导电活性细菌和电极表面之间的电子转移[66]。此外,PEDOT涂层可以防止MnO2/CF的电容由于微生物的附着和代谢而损失。这项研究中的发现对金属电极的保护和生物电化学反应器的优化混合阳极设计的优化提供了有效的策略。
碳化钼(Mo2C)是代表性的过渡金属碳化物之一,常用作MFC阳极电催化剂[67-68]。然而,纯Mo2C难以合成,其纳米颗粒倾向于聚集,聚多巴胺(PDA)含有胺基和酚基,可用作MFC阳极添加剂以提高性能[69-70]。Li等[71]在其研究中开发了一种新型阳极电催化剂,利用高度分散的聚多巴胺改性Mo2C/MoO2纳米粒子形成纳米复合生物电极(HD-Mo2C/MoO2)。利用碳热还原合成Mo2C/MoO2纳米粒子,结合PDA原位聚合进行改性。PDA抑制Mo2C/MoO2纳米颗粒聚集,由于PDA的改性,Mo2C/MoO2纳米粒子变得分散性好并且更加亲水,从而有利于生物膜形成,促进了基于c-型细胞色素的氧化还原反应的电催化活性。
NiO是一种新兴的超级电容器电极材料,广泛用于锂离子电池[72]。其成本低且环境影响小,具有高电容,但作为金属氧化物,其电导率低,从而限制了其发展。为了克服这个问题,研究人员通常使用具有新型碳材料或导电聚合物的金属氧化物来获得兼具高电容和高电导率的电极。Zhong等[73]通过原位聚合反应制备了花瓣状的NiO@PANI-CF复合电极,这项研究是首次结合NiO和PANI的性能,集合NiO的高电容和PANI的高电导率,这种复合阳极的MFC具有以下优点:内阻低、极化性能低、比表面积高、超亲水性和良好的生物相容性,最大功率密度达1 078 mW/m2。TiO2具有高比表面积、高孔隙率、高生物相容性和良好的稳定性,是一种介孔结构化无机材料,可以通过表面改性提高其光学和电子性能[74]。但是,由于TiO2的导电性较差,因此加入PANI增强其导电性和稳定性。据报道,以TiO2/PANI复合生物电极为阳极的电池,最大功率密度达到1 459 mW/m2。
3 共轭聚合物-产电细胞的直接复合电极功能材料在单个生物系统表面上的涂层不仅可以保护其在恶劣环境下的生物信息,而且还有助于提高其稳定性和性能。在MFC电活性杂化生物膜中的某些细菌细胞不能与电极直接接触[75],这种情况下,这些细菌细胞与电极之间的电子传递仅通过相邻的非导电性细菌进行,导致EET效率降低。最近有研究显示用共轭聚合物改性细菌,可以改善EET效率和细菌的生存能力[76-78],从而提高MFC的电导率和功率输出。
早有研究提出带有低聚亚苯基亚乙烯基的共轭低聚物显示出改善MFC中微生物与电极表面之间电子传递的潜力[76]。该分子的π–共轭芳族骨架可以使电荷离域化,而侧链的离子基团则赋予了其良好的水溶性,这种两亲分子具有很强的插入脂质膜和在脂质膜中排列的倾向。共轭低聚物可能起分子导线的作用,改变了细胞膜的性能,从而降低了MFC的内阻。聚(3-(3'-N, N, N-三乙氨基-1'-丙氧基)-4-甲基-2, 5-噻吩盐酸盐(PMNT)是聚噻吩衍生物,属于阳离子共轭聚合物,Wang等[77]通过用PMNT与希瓦氏菌作用,该方法极大地改善了细菌和电极之间的EET,PMNT首先通过静电力与产电菌相互作用,然后通过疏水作用插入细菌细胞壁,从而与c-型细胞色素紧密接触,那些远离电极的细菌可以基于PMNT将电子转移到电极上。因此,PMNT可以通过直接和间接降低电阻值并增强外生电子与电极之间的EET来改善界面性能(图 4A)。Zhang等[78]开发了一种用原位聚合方法将聚吡咯包覆单个S. oneidensis MR-1,不仅直接电子转移能力增强,细菌细胞的生存能力也得到了显著提高,与天然S. oneidensis MR-1相比,涂有PPy的细菌电极的输出功率提高了14.1倍。由于c-型细胞色素位于细胞外膜上,在细胞表面原位形成的导电PPy涂层增强了c-型细胞色素与PPy之间的亲和性机械接触,从而增强了基于直接接触的EET。更重要的是,形成了多重导电路径,即使细菌细胞产生的电子远离电极,也可以通过导电PPy有效地传递到电极。相反,没有PPy涂层,上述电子的传播仅沿着相邻的非导电细菌细胞进行,导致EET效率低(图 4B)。然而,用原位产生的导电聚吡咯包裹单个细菌繁琐且耗时,增强功能也仅限于直接EET。因此,迫切需要开发简单且新的策略以同时满足增加生物负载能力,增强阳极上的生物生存能力以及提高EET效率的需求。
图 4 共轭聚合物对细胞改性机理示意图[77-78] Fig. 4 Schematic diagram of the modification mechanism of conjugated polymers on cells. (A) Schematic representation of the improved bacteria biofilm formation and enhanced power generation of MFCs after adding PMNT[77]. (B) Depicting the direct contact-based EET mechanism of PPy-coated S. oneidensis MR-1/CC anode (left) and native S. oneidensis MR-1/CC anode (right)[78]. |
图选项 |
希瓦氏菌内外膜各个位置上的c-型细胞色素充当“分子导线”,在电子转移过程中起重要作用[79]。将生物相容性共轭聚合物掺入细菌膜中开辟了一条新途径,该研究策略为细胞表面修饰在微生物电化学系统中的应用提供了一个良好的开端。
4 总结与展望本文综述了具有代表性的共轭聚合物的最新研究进展,主要介绍了PANI、PPy等共轭聚合物及其复合材料在MFC中的应用。电极的结构和形貌对于MFC性能有很大影响。3D多孔电极拥有更大的比表面积、更多的活性位点,更有利于促进细胞电荷转移。不同的修饰方法所制备的共轭聚合物复合生物电极形貌结构有很大不同,因此选择合适的聚合条件至关重要。恒电位聚合法制备的复合电极表面涂层更加均匀,且附着力更强,能显著提高EET效率。表面均匀的涂层有更大的比表面积,更有利于细胞的附着和电子传递。PPy@MnO2 3D花椰菜状复合生物电极正是综合了两种优势获得了性能优异的复合电极[64]。与无机电极材料相比,有机小分子和聚合物的研究仍处于早期阶段,提高共轭聚合物材料的电化学性能还需要更深入研究。针对共轭聚合物-细胞复合电极的特点与应用,还有一些问题需要解决,如:1)共轭聚合物材料与微生物群落具体作用机制及电子传递机制需要进一步探索与明确;2)利用共轭聚合物直接修饰细胞的研究缺乏;3)目前有关共轭聚合物的在微生物燃料电池的应用种类较少,需要探索更多可能性的材料;4)虽然电性能提高,但电压稳定时间短且生物膜稳定性不高,获得长时间稳定的电化学性能的高效生物膜也将是未来研究的难点和重点。
参考文献
[1] | Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol, 2009, 7(5): 375-381. DOI:10.1038/nrmicro2113 |
[2] | Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol, 2006, 4(7): 497-508. DOI:10.1038/nrmicro1442 |
[3] | Cui JX, Wang X, Tang JC. Application of microbial fuel cell (MFC) in solid waste composting. Chin J Biotech, 2012, 28(3): 295-304 (in Chinese). 崔晋鑫, 王鑫, 唐景春. 微生物燃料电池在固体废物堆肥中的应用进展. 生物工程学报, 2012, 28(3): 295-304. |
[4] | Patil SA, Górecki K, H?egerh?ell C, et al. Cisplatin-induced elongation of Shewanella oneidensis MR-1 cells improves microbe-electrode interactions for use in microbial fuel cells. Energ Environ Sci, 2013, 6(9): 2626-2630. DOI:10.1039/c3ee41974f |
[5] | Wan MX. Conducting polymers. Polymer Bull, 1999(3): 47-53 (in Chinese). 万梅香. 导电高分子. 高分子通报, 1999(3): 47-53. |
[6] | Kou Y, Xu YH, Guo ZQ, et al. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew Chem Int Edit, 2011, 50(37): 8753-8757. DOI:10.1002/anie.201103493 |
[7] | Lin XQ, Li ZL, Liang B, et al. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere, 2019, 219: 358-364. DOI:10.1016/j.chemosphere.2018.11.212 |
[8] | Li C, Zhang LB, Ding LL, et al. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens Bioelectron, 2011, 26(10): 4169-4176. DOI:10.1016/j.bios.2011.04.018 |
[9] | Luckarift HR, Sizemore SR, Farrington KE, et al. Facile fabrication of scalable, hierarchically structured polymer/carbon architectures for bioelectrodes. ACS Appl Mater Interfaces, 2012, 4(4): 2082-2087. DOI:10.1021/am300048v |
[10] | Zhu YX, Ji JY, Ren JY, et al. Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs). Colloids Surf A: Physicochem Eng Asp, 2014, 455: 92-96. DOI:10.1016/j.colsurfa.2014.04.030 |
[11] | Chou HT, Lee HJ, Lee CY, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Bioresour Technol, 2014, 169: 532-536. DOI:10.1016/j.biortech.2014.07.027 |
[12] | Cao C, Wei LL, Wang G, et al. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells. Electrochim Acta, 2017, 231: 609-616. DOI:10.1016/j.electacta.2017.02.117 |
[13] | Huang LH, Li XF, Ren YP, et al. In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydro Energy, 2016, 41(26): 11369-11379. DOI:10.1016/j.ijhydene.2016.05.048 |
[14] | Hou JX, Liu ZL, Zhang PY. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources, 2013, 224: 139-144. DOI:10.1016/j.jpowsour.2012.09.091 |
[15] | Chen D, Shen JY, Jiang XB, et al. Fabrication of polypyrrole/β-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochim Acta, 2017, 244: 119-128. DOI:10.1016/j.electacta.2017.05.108 |
[16] | Kumar GG, Kirubaharan CJ, Udhayakumar S, et al. Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain Chem Eng, 2014, 2(10): 2283-2290. DOI:10.1021/sc500244f |
[17] | Li F, Wang D, Liu QZ, et al. The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. J Power Sources, 2019, 412: 514-519. DOI:10.1016/j.jpowsour.2018.11.090 |
[18] | Hirose A, Kasai T, Aoki M, et al. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nat Commun, 2018, 9: 1083. DOI:10.1038/s41467-018-03416-4 |
[19] | Zhai DD, Fang Z, Jin HW, et al. Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells. Bioresour Technol, 2019, 288: 121499. DOI:10.1016/j.biortech.2019.121499 |
[20] | Kelly TL, Yano K, Wolf MO. Supercapacitive properties of PEDOT and carbon colloidal microspheres. ACS Appl Mater Interfaces, 2009, 1(11): 2536-2543. DOI:10.1021/am900575v |
[21] | Liu X, Wu WG, Gu ZZ. Poly (3, 4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J Power Sources, 2015, 277: 110-115. DOI:10.1016/j.jpowsour.2014.11.129 |
[22] | Winther-Jensen B, MacFarlane DR. New generation, metal-free electrocatalysts for fuel cells, solar cells and water splitting. Energ Environ Sci, 2011, 4(8): 2790-2798. DOI:10.1039/c0ee00652a |
[23] | Zhang WZ, Xie BZ, Yang LG, et al. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell. Bioresour Technol, 2017, 233: 291-295. DOI:10.1016/j.biortech.2017.02.124 |
[24] | Rajasekharan V, Stalin T, Viswanathan S, et al. Electrochemical evaluation of anticorrosive performance of organic acid doped polyaniline based coatings. Int J Electrochem Sci, 2013, 8(9): 11327-11336. |
[25] | Liu X, Zhao XH, Yu YY, et al. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim Acta, 2017, 255: 41-47. DOI:10.1016/j.electacta.2017.09.153 |
[26] | Yellappa M, Sravan JS, Sarkar O, et al. Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation. Bioresour Technol, 2019, 284: 148-154. DOI:10.1016/j.biortech.2019.03.085 |
[27] | Fazi L, Gattia DM, Pavone L, et al. Carbon nanotube-based stretchable hybrid material film for electronic devices and applications. J Nanosci Nanotechnol, 2020, 20(7): 4549-4556. DOI:10.1166/jnn.2020.17874 |
[28] | Yazdi AA, D'Angelo L, Omer N, et al. Carbon nanotube modification of microbial fuel cell electrodes. Biosens Bioelectron, 2016, 85: 536-552. DOI:10.1016/j.bios.2016.05.033 |
[29] | Liang P, Wang HY, Xia X, et al. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosens Bioelectron, 2011, 26(6): 3000-3004. DOI:10.1016/j.bios.2010.12.002 |
[30] | Xie X, Hu LB, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett, 2011, 11(1): 291-296. DOI:10.1021/nl103905t |
[31] | Roh SH, Woo HG. Carbon nanotube composite electrode coated with polypyrrole for microbial fuel cell application. J Nanosci Nanotechnol, 2015, 15(1): 484-487. DOI:10.1166/jnn.2015.8404 |
[32] | Zhao N, Ma ZK, Song HH, et al. Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim Acta, 2019, 296: 69-74. DOI:10.1016/j.electacta.2018.11.039 |
[33] | Cui HF, Du L, Guo PB, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources, 2015, 283: 46-53. DOI:10.1016/j.jpowsour.2015.02.088 |
[34] | Zhang P, Liu J, Qu YP, et al. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. J Power Sources, 2017, 361: 318-325. DOI:10.1016/j.jpowsour.2017.06.069 |
[35] | Liu J, Qiao Y, Guo CX, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technol, 2012, 114: 275-280. DOI:10.1016/j.biortech.2012.02.116 |
[36] | Han S, Wu DQ, Li S, et al. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater, 2014, 26(6): 849-864. DOI:10.1002/adma.201303115 |
[37] | Zhou D, Cui Y, Han BH. Graphene-based hybrid materials and their applications in energy storage and conversion. Chinese Sci Bull, 2012, 57(23): 2983-2994. DOI:10.1007/s11434-012-5314-9 |
[38] | Yong YC, Wu YC, Song H, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano, 2012, 6(3): 2394-2400. DOI:10.1021/nn204656d |
[39] | Lin T, Ding WQ, Sun LM, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cell. Nano Energy, 2018, 50: 239-248. |
[40] | Zhao CE, Wang WJ, Sun D, et al. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Chem A Eur J, 2014, 20(23): 7091-7097. DOI:10.1002/chem.201400272 |
[41] | Sun DZ, Yu YY, Xie RR, et al. In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems. Biosen Bioelectron, 2017, 87: 195-202. DOI:10.1016/j.bios.2016.08.037 |
[42] | Xiao YH, Cui XY, Hancock JM, et al. Electrochemical polymerization of poly (hydroxymethylated-3, 4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sensors and Actuators B: Chemical, 2004, 99(2/3): 437-443. |
[43] | Zhu CZ, Zhai JF, Wen D, et al. Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem, 2012, 22(13): 6300-6306. DOI:10.1039/c2jm16699b |
[44] | Lv ZS, Chen YF, Wei HC, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta, 2013, 111: 366-373. DOI:10.1016/j.electacta.2013.08.022 |
[45] | Kros A, Nolte RJM, Sommerdijk NAJM. Conducting Polymers with confined dimensions: track-etch membranes for amperometric biosensor applications. Adv Mater, 2002, 14(23): 1779-1782. DOI:10.1002/1521-4095(20021203)14:23<1779::AID-ADMA1779>3.0.CO;2-T |
[46] | Wang Y, Zhao CE, Sun D, et al. A graphene/poly (3, 4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem, 2013, 78(8): 823-829. DOI:10.1002/cplu.201300102 |
[47] | Wang KB, Xun Q, Zhang Q. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem, 2019, 2(1): 100025. |
[48] | Pocaznoi D, Calmet A, Etcheverry L, et al. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energ Environ Sci, 2012, 5(11): 9645-9652. DOI:10.1039/c2ee22429a |
[49] | Chen YF, Lv ZS, Xu JM, et al. Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials. J Power Sources, 2012, 201: 136-141. DOI:10.1016/j.jpowsour.2011.10.134 |
[50] | Hou JX, Liu ZJ, Li YX. Polyaniline modified stainless steel fiber felt for high-performance microbial fuel cell anodes. J Clean Energy Technol, 2015, 3(3): 165-169. DOI:10.7763/JOCET.2015.V3.189 |
[51] | Song RB, Yan K, Lin ZQ, et al. Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J Mater Chem A, 2016, 4(38): 14555-14559. DOI:10.1039/C6TA05770E |
[52] | Guo K, Donose BC, Soeriyadi AH, et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ Sci Technol, 2014, 48(12): 7151-7156. DOI:10.1021/es500720g |
[53] | Guo K, Soeriyadi AH, Feng HA, et al. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems. Bioresour Technol, 2015, 195: 46-50. DOI:10.1016/j.biortech.2015.06.060 |
[54] | Guo K, Hidalgo D, Tommasi T, et al. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems. Bioresour Technol, 2016, 211: 664-668. DOI:10.1016/j.biortech.2016.03.161 |
[55] | Wang YQ, Li B, Zeng LZ, et al. Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for high-performance microbial fuel cells. Biosens Bioelectron, 2013, 41: 582-588. DOI:10.1016/j.bios.2012.09.054 |
[56] | Pu KB, Ma Q, Cai WF, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J, 2018, 132: 255-261. DOI:10.1016/j.bej.2018.01.018 |
[57] | Rahman MA, Noh HB, Shim YB. Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. Anal Chem, 2008, 80(21): 8020-8027. DOI:10.1021/ac801033s |
[58] | Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energ Environ Sci, 2008, 1(4): 417-429. DOI:10.1039/b806498a |
[59] | Sonawane JM, Al-Saadi S, Singh RK, et al. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells. Electrochim Acta, 2018, 268: 484-493. DOI:10.1016/j.electacta.2018.01.163 |
[60] | Qiao Y, Bao SJ, Li CM, et al. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano, 2008, 2(1): 113-119. DOI:10.1021/nn700102s |
[61] | Yin T, Lin ZY, Su L, et al. Preparation of vertically oriented TiO2 nanosheets modified carbon paper electrode and its enhancement to the performance of MFCs. ACS Appl Mater Interfaces, 2015, 7(1): 400-408. DOI:10.1021/am506360x |
[62] | Zhang CY, Liang P, Jiang Y, et al. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. J Power Sources, 2015, 273: 580-583. DOI:10.1016/j.jpowsour.2014.09.129 |
[63] | Feng CH, Lv ZS, Yang XS, et al. Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power. Phys Chem Chem Phys, 2014, 16(22): 10464-10472. DOI:10.1039/C4CP00923A |
[64] | Zhao XH, Tian T, Guo M, et al. Cauliflower-like polypyrrole@MnO2 modified carbon cloth as a capacitive anode for high-performance microbial fuel cells. J Chem Technol Biot, 2020, 95(1): 163-172. DOI:10.1002/jctb.6218 |
[65] | Liu PP, Chang YZ, Liang P, et al. Enhancing extracellular electron transfer efficiency and bioelectricity production by vapor polymerization poly (3, 4-ethylenedioxythiophene)/MnO2 hybrid anode. Bioelectrochemistry, 2018, 126: 72-78. |
[66] | Kracke F, Vassilev L, Kr?mer JO. Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems. Front Microbiol, 2015, 6: 575. |
[67] | Zeng LZ, Zhang LX, Li WS, et al. Molybdenum carbide as anodic catalyst for microbial fuel cell based on Klebsiella pneumoniae. Biosens Bioelectron, 2010, 25(12): 2696-2700. DOI:10.1016/j.bios.2010.05.002 |
[68] | Wang YQ, Li B, Cui D, et al. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens Bioelectron, 2014, 51: 349-355. DOI:10.1016/j.bios.2013.07.069 |
[69] | Huang HL, He ZY, Lin XM, et al. Ultradispersed platinum nanoclusters on polydopamine- functionalized carbon nanotubes as an excellent catalyst for methanol oxidation reaction. Appl Cata A Gen, 2014, 490: 65-70. |
[70] | Du Q, An JK, Li JH, et al. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J Power Sources, 2017, 343: 477-482. DOI:10.1016/j.jpowsour.2017.01.093 |
[71] | Zeng LZ, Chen XF, Li HY, et al. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim Acta, 2018, 283: 528-537. DOI:10.1016/j.electacta.2018.06.192 |
[72] | Rahman MA, Wen CE. Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries. Ionics, 2015, 21(10): 2709-2723. DOI:10.1007/s11581-015-1475-2 |
[73] | Zhong DJ, Liao XR, Liu YQ, et al. Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using a petaline NiO@polyaniline-carbon felt anode. Bioresour Technol, 2018, 258: 125-134. DOI:10.1016/j.biortech.2018.01.117 |
[74] | Zhou H, Liu L, Yin K, et al. Electrochemical investigation on the catalytic ability of tyrosinase with the effect of nano titanium dioxide. Electrochem Commun, 2006, 8(7): 1168-1172. DOI:10.1016/j.elecom.2006.05.016 |
[75] | Li F, Song H. Promoting efficiency of microbial extracellular electron transfer by synthetic biology. Chin J Biotech, 2017, 33(3): 516-534 (in Chinese). 李锋, 宋浩. 微生物胞外电子传递效率的合成生物学强化. 生物工程学报, 2017, 33(3): 516-534. |
[76] | Wang VB, Du J, Chen XF, et al. Improving charge collection in Escherichia coli–carbon electrode devices with conjugated oligoelectrolytes. Phys Chem Chem Phys, 2013, 15(16): 5867-5872. DOI:10.1039/c3cp50437a |
[77] | Zhang PB, Zhou X, Qi RL, et al. Conductive polymer-exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv Electron Mater, 2019, 5(8): 1900320. DOI:10.1002/aelm.201900320 |
[78] | Song RB, Wu YC, LI ZQ, et al. Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew Chem Int Edit, 2017, 56(35): 10516-10520. DOI:10.1002/anie.201704729 |
[79] | Deng L, Guo SJ, Liu Z, et al. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chem Commun, 2010, 46(38): 7172-7174. DOI:10.1039/c0cc01371d |