删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

肝素硫酸转移酶优化表达及其在动物源肝素硫酸化中的应用

本站小编 Free考研考试/2021-12-26

周正雄1,2, 王兵兵1,2, 胥睿睿1,2, 李青1,2, 堵国成1,2, 康振1,2
1 江南大学 工业生物技术教育部重点实验室,江苏,无锡 214122;
2 江南大学 生物工程学院,江苏 无锡 214122

收稿日期:2018-07-02;接收日期:2018-09-06; 网络出版时间:2018-10-15 基金项目:国家自然科学基金(No. 31670092),江南大学自主科研计划重点项目基金(No. 1012050205181370)资助

摘要:肝素是一种重要的凝血药物,目前主要依赖于动物小肠粘膜的提取。动物源肝素含有的抗凝血活性五糖单位GlcNS6S-GlcA-GlcNS6S3S-Ido2S-GlcNS6S少,抗凝血活性低下。文中提出并验证了一种基于酶法催化动物源肝素,提高其硫酸化程度和抗凝血活性的方法。通过比较3种硫酸转移酶肝素-2-硫酸转移酶(Heparan sulfate-2-O-sulfotransferase,HS2ST)、肝素-6-硫酸转移酶(Heparan sulfate-6-O-sulfotransferase,HS6ST)、肝素-3-硫酸转移酶(Heparan sulfate-3-O-sulfotransferase,HS3ST)在重组大肠杆菌及重组毕赤酵母中表达,确定了毕赤酵母作为3种硫酸转移酶的表达宿主;进一步通过N端融合麦芽糖融合蛋白MBP和硫氧还蛋白TrxA,HS2ST和HS6ST的酶表达水平分别提高至(839±14) U/L和(792±23) U/L。通过3种硫酸转移酶HS2ST、HS6ST和HS3ST共同催化动物源肝素,其抗凝血活性由(76±2) IU/mg提高至(189±17) IU/mg。
关键词:肝素 抗凝血活性 硫酸转移酶 毕赤酵母 异源表达
Optimized expression of heparin sulfotransferases and their application in sulfation of animal derived heparin
Zhengxiong Zhou1,2, Bingbing Wang1,2, Ruirui Xu1,2, Qing Li1,2, Guocheng Du1,2, Zhen Kang1,2
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China;
2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

Received: July 2, 2018; Accepted: September 6, 2018; Published: October 15, 2018
Supported by: National Natural Science Foundation of China (No. 31670092), the Fundamental Research Funds for the Central Universities (No. 1012050205181370)
Corresponding author:Guocheng Du. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: gcdu@jiangnan.edu.cn
Zhen Kang. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: zkang@jiangnan.edu.cn


Abstract: Heparin is a very important anticoagulant drug. Currently, heparin is mainly extracted from porcine mucosa. However, animal-derived heparin shows low anticoagulant activity due to the low proportion of the anticoagulant active unit, the GlcNS6S-GlcA-GlcNS6S3S-Ido2S-GlcNS6S pentasaccharide. In this study we proposed an enzymatic strategy to sulfate the animal-sourced heparin to increase the proportion of anticoagulant pentasaccharide and the anticoagulant activity. First, three sulfotransferases HS2ST, HS6ST, and HS3ST were expressed tentatively in Escherichia coli and Pichia pastoris. After measuring the sulfotransferase activity, we confirmed P. pastoris GS115 is the better host for sulfotransferases production. Then, the maltose binding protein (MBP) and thioredoxin (TrxA) were fused separately to the N-terminal of sulfotransferases to increase enzyme solubility. As a result, the yields of HS2ST and HS6ST were increased to (839±14) U/L and (792±23) U/L, respectively. Subsequent sulfation of the animal-sourced heparin with the recombinant HS2ST, HS6ST and HS3ST increased the anticoagulant activity from (76±2) IU/mg to (189±17) IU/mg.
Keywords: heparin anticoagulant activity sulfotransferase Pichia pastoris heterologous expression
肝素是一类由葡萄糖醛酸(Glucuronic acid, GlcUA)和N-乙酰氨基葡萄糖(N-Acetyl-D-glucosamine,GlcNAc)经β-1, 4和α-1, 4糖苷键交替连接,并经一定程度的硫酸化修饰而成的粘多糖[1-2]。它广泛存在于细胞表面,在细胞识别、信号传递、组织发育过程中起重要的作用[3-4]。肝素的五糖结构GlcNS6S-GlcA-GlcNS6S3S-Ido2S-GlcNS6S能与丝氨酸蛋白酶抑制剂Antithrombin (AT)结合、改变AT的结构并调控血液凝结,因此,在临床上肝素被用作手术后的抗凝血药物(图 1)[5-6]
图 1 肝素的抗凝血机理 Figure 1 The anticoagulant mechanism of heparin. Binding of the pentasaccharide to antithrombin causes a conformational change in antithrombin that accelerates its interaction with thrombin. In addition, catalysis of antithrombin-mediated inactivation of thrombin requires the formation of a ternary heparin-antithrombin-thrombin complex.
图选项




目前临床上使用的肝素多为从猪小肠等动物肠黏膜中提取得到。而超过2/3的动物来源的肝素活性单位(小于20 USP U/mg)远低于医药级肝素活性单位的要求(120–180 U/mg)[7]。这是由于抗凝血活性特征结构单元占总结构单元的比例仅为10%左右[8],部分结构未被硫酸化或硫酸化程度偏低。单位质量的抗凝血活性较低导致临床使用过程中大量添加肝素容易诱导血小板减少、术后出血等并发症[9-10]。因此,提高肝素的硫酸化修饰程度可以降低使用剂量和感染并发症的风险。
以往研究往往关注于动物源肝素的组成、异源表达肝素合成的各种磺酸转移酶和变构酶以及这些酶催化反应机制。仅有陈敬华、陈萌、Fu等[11-13]证明通过异源表达的肝素3-O-硫酸转移酶可以修饰动物源肝素并提高其抗凝血活性。
为了进一步提高动物源肝素的硫酸化程度以及抗凝血活性,本研究在对动物源肝素二糖结构进行分析的基础上[14],通过优化肝素-2-硫酸转移酶(Heparan sulfate 2-O-sulfotransferase,HS2ST),肝素-6-硫酸转移酶(Heparan sulfate 6-O-sulfotransferase,HS6ST),肝素-3-硫酸转移酶(Heparan sulfate 3-O-sulfotransferase, HS3ST) 3种硫酸转移酶,建立了体外酶法催化动物源肝素,提高其抗凝血活性的策略。
1 材料与方法1.1 菌株与质粒本实验所有的质粒构建都在Escherichia coli JM109中进行,大肠杆菌重组菌株构建的出发菌株为E. coli BL21,毕赤酵母重组菌株构建的出发菌株为Pichia pastoris GS115,详情见表 1
表 1 本文所用质粒和菌株Table 1 Plasmids and strains in this study
Name Description Source
Plasmids
pET28a Expression vector, kanR Lab stock
pET28a-HS2ST pET28a containing HS2ST This work
pET28a-HS6ST pET28a containing HS6ST This work
pET28a-HS3ST pET28a containing HS3ST This work
pET28a-MBP-HS2ST pET28a containing MBP and HS2ST This work
pET28a-MBP-HS6ST pET28a containing MBP and HS6ST This work
pPIC9K Expression vector, kanR, AmpR Lab stock
pPIC9K-HS2ST pPIC9K containing HS2ST This work
pPIC9K-HS6ST pPIC9K containing HS6ST This work
pPIC9K-HS3ST pPIC9K containing HS3ST This work
pPIC9K-MBP-HS2ST pPIC9K containing MBP and HS2ST This work
pPIC9K-MBP-HS6ST pPIC9K containing MBP and HS6ST This work
pPIC9K-MBP-TrxA-HS2ST pPIC9K containing MBP, TrxA and HS2ST This work
pPIC9K-MBP-TrxA-HS6ST pPIC9K containing MBP, TrxA and HS6ST This work
Strains
Escherichia coli BL21 Expression host Lab stock
E. coli BL21-pET28a-HS2ST E. coli BL21 harboring pET28a-HS2ST This work
E. coli BL21-pET28a-HS6ST E. coli BL21 harboring pET28a-HS6ST This work
E. coli BL21-pET28a-HS3ST E. coli BL21 harboring pET28a-HS3ST This work
E. coli BL21-pET28a-MBP-HS2ST E. coli BL21 harboring pET28a-MBP-HS2ST This work
E. coli BL21-pET28a-MBP-HS6ST E. coli BL21 harboring pET28a-MBP-HS6ST This work
Pichia pastoris GS115 Expression host Lab stock
P. pastoris GS115-pPIC9K-HS2ST P. pastoris GS115 harboring pPIC9K-HS2ST This work
P. pastoris GS115-pPIC9K-HS6ST P. pastoris GS115 harboring pPIC9K-HS6ST This work
P. pastoris GS115-pPIC9K-HS3ST P. pastoris GS115 harboring pPIC9K-HS3ST This work
P. pastoris GS115-pPIC9K-MBP-HS2ST P. pastoris GS115 harboring pPIC9K-MBP-HS2ST This work
P. pastoris GS115-pPIC9K-MBP-HS6ST P. pastoris GS115 harboring pPIC9K-MBP-HS6ST This work
P. pastoris GS115-pPIC9K-MBP-TrxA-HS2ST P. pastoris GS115 harboring pPIC9K-MBP-TrxA-HS2ST This work
P. pastoris GS115-pPIC9K-MBP-TrxA-HS6ST P. pastoris GS115 harboring pPIC9K-MBP-TrxA-HS6ST This work

表选项


1.2 菌株构建将密码子优化后的鸡来源HS2ST (NP_989812.1)、HS6ST (NP_989813.1)及老鼠来源HS3ST (NP_034604.1)经PCR扩增后(所用引物见表 2),酶切连接至pET28a建重组载体pET28a-HS2ST、pET28a-HS6ST和pET28a-HS3ST。将来源于大肠杆菌的促融标签麦芽糖融合蛋白(Maltose binding protein,MBP)基因经PCR扩增后一步克隆至pET28a-HS2ST、pET28a-HS6ST构建重组质粒pET28a-MBP-HS2ST和pET28a-MBP-HS6ST。
表 2 本文所用引物Table 2 Primers in this study
Name Primer sequence (5′–3′) Restriction enzyme
H2(28a) F CGCGGATCCGATGGTCCTAGACAAGAAGTTGC BamHⅠ
H2(28a) R GTGCTCGAGTTAATTAGATTTAGGATAAATTTTTTCATAGAAGAAATTTTG Xho
H6(28a) F GTCGCGGATCCGCTTTCGATATGAAAGGTGAAGATG BamHⅠ
H6(28a) R GTGCTCGAGTTACCACTTTTCAATAATATGAGACATGTAATCTTCAG Xho
H3(28a) F TCGCGGATCCAAGGGTGGTACTAGAGCTTTGTTG BamHⅠ
H3(28a) R GTGCTCGAGTTAATGCCAATCAAAAGTTCTACCAACCAA Xho
H2(9K) F CGCTACGTACACCACCACCACCACCACGATGGTCCTAGACAAGAAGTTGC SnaBⅠ
H2(9K) R TGGCGGCCGCTTAATTAGATTTAGGATAAATTTTTTCATAGAAGAAATTTTG Not
H6(9K) F GCTACGTACACCACCACCACCACCACGCTTTCGATATGAAAGGTGAAGATG SnaBⅠ
H6(9K) R GTGGCGGCCGCTTACCACTTTTCAATAATATGAGACATGTAATCTTCAG Not
H3(9K) F GCTACGTACACCACCACCACCACCACAAGGGTGGTACTAGAGCTTTGTTG SnaBⅠ
H3(9K) R GTGGCGGCCGCTTAATGCCAATCAAAAGTTCTACCAACCAA Not
MBP(28a-H2) F CCATATGGCTAGCATGACTGGTGGAATGAAAATCGAAGAAGGTAAACTGG ---
MBP(28a-H2) R GCAACTTCTTGTCTAGGACCATCAGTCTGCGCGTCTTTCAGG ---
MBP(28a-H6) F CCATATGGCTAGCATGACTGGTGGAATGAAAATCGAAGAAGGTAAACTGG ---
MBP(28a-H6) R CATCTTCACCTTTCATATCGAAAGCAGTCTGCGCGTCTTTCAGG ---
MBP(9K-H2) F CTCTCGAGAAAAGAGAGGCTGAAGCTATGCACCACCACCACCACCACAAAATCGAAGAAGGTAAACTGG ---
MBP(9K-H2) R GCAACTTCTTGTCTAGGACCATCAGTCTGCGCGTCTTTCAGG ---
MBP(9K-H6) F CTCTCGAGAAAAGAGAGGCTGAAGCTATGCACCACCACCACCACCACAAAATCGAAGAAGGTAAACTGG ---
MBP(9K-H6) R CATCTTCACCTTTCATATCGAAAGCAGTCTGCGCGTCTTTCAGG ---
TrxA(H2) F CCTGAAAGACGCGCAGACTATGAGCGATAAAATTATTCACCTGACTGACG ---
TrxA(H2) R GCAACTTCTTGTCTAGGACCATCGGCCAGGTTAGCGTCGAGG ---
TrxA(H6) F CCTGAAAGACGCGCAGACTATGAGCGATAAAATTATTCACCTGACTGACG ---
TrxA(H6) R CATCTTCACCTTTCATATCGAAAGCGGCCAGGTTAGCGTCGAGG ---
Underlines represent the restriction site.

表选项


将密码子优化后的鸡来源HS2ST、HS6ST及老鼠来源HS3ST经PCR扩增后,酶切连接至pPIC9k构建重组载体pPIC9K-HS2ST、pPIC9K-HS6ST和pPIC9K-HS3ST。将来源于大肠杆菌的MBP及促进二硫键形成的硫氧还蛋白(TrxA)基因经PCR扩增后,一步克隆至pPIC9K-HS2ST和pPIC9K-HS6ST构建重组质粒pPIC9K-MBP-TrxA-HS2ST和pPIC9K-MBP-TrxA-HS6ST。
将pET系列的重组质粒42 ℃热激90 s转化E. coli BL21构建硫酸转移酶的重组大肠杆菌E. coli BL21-pET28A-HS2ST、E. coli BL21-pET28A-HS6ST、E. coli BL21-pET28A-HS3ST、E. coli BL21-pET28A-MBP-HS2ST及E. coli BL21-pET28A-MBP-HS6ST等。
将pPIC9K系列的重组质粒经SalⅠ酶切线性化后1 500 V电转P. pastoris GS115构建硫酸转移酶的重组毕赤酵母P. pastoris GS115-pPIC9K-HS2ST、P. pastoris GS115-pPIC9K-HS6ST、P. pastoris GS115-pPIC9K-HS3ST、P. pastoris GS115-pPIC9K-MBP-TrxA-HS2ST及P. pastoris GS115-pPIC9K-MBP-TrxA-HS6ST。
1.3 培养基组分LB培养基(g/L):酵母粉10,蛋白胨5,NaCl 5,用于大肠杆菌的培养;TB培养基(g/L):酵母粉24,蛋白胨12,甘油4 mL,KH2PO4 2.31,K2HPO4 12.54,用于大肠杆菌工程菌株的培养;YPD培养基(g/L):酵母粉10,蛋白胨20,葡萄糖20,用于毕赤酵母的培养;MD培养基(g/L):琼脂20,YNB 13.4,生物素4×10–4,葡萄糖20,用于重组毕赤酵母转化子的筛选;BMGY培养基(g/L):酵母粉10,蛋白胨20,K2HPO4 3,KH2PO4 11.8,YNB 13.4,生物素4×10–4,甘油10 mL,用于重组毕赤酵母的种子培养;BMMY培养基(g/L):酵母粉10,蛋白胨20,K2HPO4 3,KH2PO4 11.8,YNB 13.4,生物素4×10–4,甲醇5 mL,用于重组毕赤酵母的诱导培养。同时在培养基中根据质粒的抗性需要添加一定浓度的抗生素:氨苄青霉素100 mg/L,卡那霉素50 mg/L,遗传霉素4 mg/mL等。
1.4 重组菌株培养1.4.1 重组大肠杆菌的培养挑取单菌落接种于50 mg/L卡那霉素的3 mL LB培养基中,37 ℃、220 r/min过夜培养。按1% (V/V)接种于新鲜的50 mL LB培养基中,37 ℃、220 r/min培养至OD600为0.6?1.0,添加终浓度为0.5 mmol/L的IPTG,30 ℃培养6 h诱导重组蛋白的表达。
1.4.2 重组毕赤酵母的培养重组毕赤酵母的培养参考毕赤酵母分泌表达手册(A Pichia Vector for Multicopy Integration and Secreted Expression,Invitrogen)。
1.5 硫酸转移酶粗酶液制备对于在大肠杆菌中进行胞内表达的重组硫酸转移酶的粗酶液获取主要由以下步骤组成:1)离心5 min收集菌体(8 000×g,4 ℃);2) 20 mmol/L Tris-HCl (pH 7.4)洗涤菌体2次;3) 20 mmol/L Tris-HCl (pH 7.4)重悬菌体至OD600=20;4)高压匀浆破碎细胞(800 bar,5 min);5) 12 000×g离心20 min收集上清备测酶活及纯化。
对于在毕赤酵母中进行分泌表达的重组硫酸转移酶的粗酶液获取:8 000×g、4 ℃离心10 min收集上清即为粗酶液。
1.6 重组蛋白的亲和纯化首先用25 mL溶液A (20 mmol/L Tris-HCl (pH 7.4),500 mmol/L NaCl,20 mmol/L咪唑)平衡Ni-NTA柱后上样过0.22 mm的粗酶液,分别用10%、40%、100%的溶液B (20 mmol/L Tris-HCl (pH 7.4),500 mmol/L NaCl,500 mmol/L咪唑)进行洗脱并收集相应的洗脱液。并对得到的洗脱液进行脱盐处理,所用脱盐缓冲液为20 mmol/L Tris-HCl (pH 7.4),脱盐柱为G10。
1.7 硫酸转移酶酶活测定硫酸转移酶酶活测定采用分光光度计检测对硝基苯酚的生成量[15-16]。标准反应条件为900 mL的底物母液(50 mmol/L PNPS, 0.5 mmol/L3?, 5?-二磷酸腺苷, 0.5 mg ASST IV和10 mg肝素溶解在20 mmol/L Tris-HCl (pH7.4)中),37 ℃预热5 min后加入100 mL 1 g/L的硫酸转移酶液,37 ℃反应1 h后加入0.2 mL 10 mol/L氢氧化钠溶液终止反应。12 000×g离心10 min后去除沉淀,400 nm下测定酶联反应产生的对硝基苯酚的吸光值。一个硫酸转移酶的活性单位定义为在pH 7.4、37 ℃条件下,每小时释放1 mmol/L对硝基苯酚所需要的酶量。对照反应为相同条件下加入等量已灭活的酶液。每个反应均做3个生物学重复,取平均值为最终的酶活值。
1.8 酶法修饰肝素在1 mL底物母液中,单独或共同加入300 mg硫酸转移酶,37 ℃反应48 h后加入100 mL 10mol/L NaOH终止反应。
1.9 肝素二糖结构鉴定取100 mL的酶法修饰液,加入10 mL 4 U/mL的肝素裂解酶Ⅰ和4 U/mL的肝素裂解酶Ⅲ,37 ℃反应至OD232吸光值不再增加,12 000×g离心20 min收集上清备测LC-TOF-MS [17]。LC洗脱条件为60 min内甲醇浓度由0上升线性至40%。MS条件为在负离子模式下进行100–900 m/z扫描,其中氮气为载气。
1.10 肝素抗凝血活性测定肝素效价的测定方法参考中国药典《1208肝素生物测定法》APTT法[18]:取血浆50 mL加入酶法修饰肝素反应液50 mL,混合均匀,加入APTT试剂50 mL,37 ℃预热3 min,加入50 mL 25 mmol/L CaCl2后立即用血液凝固分析仪测定凝结时间。每个反应均做3个生物学重复,取平均值为最终的肝素效价。
2 结果与分析2.1 硫酸转移酶的表达为了研究不同宿主对硫酸转移酶表达的影响,原核表达宿主E. coli BL21和真核表达宿主P. pastoris GS115作为两个代表性宿主表达来源于鸡和老鼠的硫酸转移酶。
E. coli BL21为表达宿主时,重组蛋白HS2ST、HS6ST在诱导性启动子T7的诱导下均以包涵体的形式存在(图 2A2B)。在两种硫酸转移酶的N端融合促融标签MBP后,在重组E. coli胞内上清中有明显条带(图 2C2D),此结果与文献报道一致[19-20],表明融合表达MBP有助于动物源基因在微生物细胞中的可溶表达。重组蛋白HS3ST在诱导性启动子T7的诱导下有清晰的可溶表达条带(图 2D)。
图 2 硫酸转移酶异源表达蛋白胶图 Figure 2 SDS-PAGE analysis of sulfotransferases expressed in E. coli and P. pastoris. (A) SDS-PAGE analysis of HS2ST expressed in E. coli BL21. M: marker; 1: supernatant of control; 2: supernatant of HS2ST; 3: precipitation of HS2ST; 4: precipitation of control. (B) SDS-PAGE analysis of HS6ST expressed in E. coli BL21. M: marker; 1: precipitation of control; 2: precipitation of HS6ST. (C) SDS-PAGE analysis of MBP-HS2ST. M: marker; 1: supernatant of control; 2: supernatant of MBP-HS2ST. (D) SDS-PAGE analysis of MBP-HS6ST and HS3ST expressed in E. coli BL21. 1: supernatant of control; 2: supernatant of MBP-HS6ST; 3: supernatant of control; 4: supernatant of HS3ST; 5: precipitation of control; 6: precipitation of HS3ST; M: marker. (E) SDS-PAGE analysis of MBP-TrxA-HS2ST and MBP-TrxA-HS6ST expressed in P. pastoris GS115. 1: supernatant of control; 2: supernatant of MBP-TrxA-HS2ST; 3: supernatant of control; 4: supernatant of MBP-TrxA-HS6ST; M: marker. (F) SDS-PAGE analysis of HS3ST expressed in P. pastoris GS115. 1: supernatant of control; 2: supernatant of HS3ST; 3: purified HS3ST; M: marker.
图选项




P. pastoris GS115为表达宿主时,对3种硫酸转移酶进行分泌表达。在诱导性启动子AOX作用下,重组P. pastoris胞外未见到符合HS2ST、HS6ST大小的条带(结果未展示),这一点与在乳酸克鲁维酵母Kluyveromyces lactis中表达硫酸转移酶结果较为一致[19]。鉴于在重组E. coli中融合MBP提高上述两种硫酸转移酶的可溶表达,在P. pastoris中异源表达上述两种蛋白时也在N端融合MBP,得到了清晰的条带(结果未展示)。同时,根据在线预测网站http://disulfind.dsi.unifi.it/预测上述两种硫酸转移酶的二级结构表明分别存在2对、6对二硫键。因此在MBP的C端、硫酸转移酶的N端融合TrxA促进二硫键的形成[21]。由此在重组P. pastoris胞外发酵液上清中见到符合MBP-TrxA-HS2ST (87 kDa)、MBP-TrxA-HS6ST (97 kDa)大小的条带(图 2E)。重组蛋白HS3ST在重组P. pastoris中,以AOX为启动子时成功地实现了胞外的分泌表达(图 2F)。
对于不容易电离的待测生物大分子蛋白,经基质辅助激光解吸电离飞行时间质谱(Matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF-MS)鉴定上述条带均为目的条带。
2.2 硫酸转移酶酶活测定以重组E. coli胞内可溶表达得到的MBP-HS2ST、MBP-HS6ST及HS3ST和重组P. pastoris胞外分泌表达得到的MBP-HS2ST、MBP-HS6ST、HS3ST及MBP-TrxA-HS2ST、MBP-TrxA-HS6ST进行硫酸转移酶活性测定。以肝素为底物,通过偶联酰基磺酸转移酶ASSTIV,在此过程中生成的显色物质作为硫酸转移酶活性定量指标。其中HS2ST催化IdoA 2号位羟基硫酸化形成Ido2S,HS6ST催化GlcNS 6号位羟基硫酸化形成GlcNS6S,HS3ST催化GlcNS6S形成GlcNS6S3S,从而形成抗凝血活性的核心五糖结构GlcNS6S-GlcA-GlcNS6S3S-Ido2S-GlcNS6S。由图 3A可见重组P. pastoris分泌表达的MBP-HS2ST、MBP-HS6ST、HS3ST粗酶液酶活明显高于重组E. coli胞内表达的上述重组蛋白的酶活,分别达到了(321±13) U/L、(270±8) U/L、(749±26) U/L。这也说明真核细胞更易于表达得到高活性的硫酸转移酶,与在K. lactis中异源表达得到的硫酸转移酶活性高于E. coli中异源表达得到的硫酸转移酶酶活的结论一致[19]。因此后续针对重组蛋白的改造都集中在重组P.pastoris中进行。
图 3 不同宿主异源表达硫酸转移酶的酶活差异 Figure 3 Enzymes activities assay of sulfotransferases expressed in E. coli and P. pastoris. (A) Comparison of the enzyme activity between E. coli and P. pastoris-expressed sulfotransferases: : E. coli; n: P. pastoris. (B) The effect of TrxA on sulfotransferases activities.
图选项




以N端融合伴侣分子TrxA的重组P. pastoris MBP-TrxA-HS2ST、P. pastoris MBP-TrxA-HS6ST的胞外上清粗酶进行催化反应得到上述两种粗酶液的酶活分别是(839±14) U/L和(792±23) U/L,比没有融合TrxA的重组P. pastoris胞外上清粗酶液酶活高(图 3B)。因此,几种硫酸转移酶共同催化肝素磺酸化修饰时采用重组P. pastoris分泌表达的MBP-TrxA-HS2ST (比酶活(20 975±350) U/mg)、MBP-TrxA-HS6ST (比酶活(4 400±128) U/mg)及HS3ST (比酶活(489±17) U/mg)。上述硫酸转移酶在P. pastoris中异源表达得到的比酶活也大于在K. lactis中异源表达得到比酶活[19]
2.3 肝素结构鉴定经硫酸转移酶催化后的反应液通过阴离子交换树脂DEAE纯化后得到肝素改性样品。肝素裂解酶Ⅰ、Ⅲ共同作用于肝素改性样品得到分子量小于2 000 Da的肝素二糖。鉴于肝素二糖在中性及弱碱性条件下带负电荷,因此通过LC-TOF-MS的负离子模式对得到的二糖结构及含量进行鉴定和计算(图 4)。
图 4 肝素二糖结构解析 Figure 4 The structure of heparin disaccharides.
图选项




经MBP-TrxA-HS2ST催化肝素后,DU2S-GlNS提高了36%至占总二糖结构的16.3%,经MBP-TrxA-HS6ST催化肝素后DU2S-GlNS6S提高了7%至占总二糖结构的62.0%,经HS3ST催化肝素后,DU2S-GlNS6S3S提高了115%至占总二糖结构的36.6%。MBP-TrxA-HS6ST和HS3ST共同催化肝素时,DU2S-GlNS6S3S提高了121%至占总二糖结构的37.6%;MBP-TrxA-HS2ST、MBP-TrxA-HS6ST和HS3ST等3个硫酸化酶共同催化肝素时,DU2S-GlNS6S3S提高了123%占总二糖结构的37.9%。
2.4 肝素抗凝血活性测定来源于动物肠黏膜组织提取的肝素经3种硫酸化酶催化改性后,由APTT法测定其抗凝血活性。结果表明通过HS3ST催化后,肝素抗凝血活性由(76±2) IU/mg提高至(140±8) IU/mg,高于2017年Fu等[13]利用HS3ST催化牛小肠来源肝素提高肝素抗凝血活性至105 IU/mg;经MBP-TrxA-HS6ST及HS3ST催化后的肝素抗凝血活性达到(167±12) IU/mg;由MBP-TrxA-HS2ST、MBP-TrxA-HS6ST及HS3ST共同催化的肝素抗凝血活性最高达到(189±17) IU/mg,近似国标及美国标准的肝素使用标准180 IU/mg (图 5)。
图 5 酶法修饰对肝素抗凝血活性的影响 Figure 5 Effect of sulfotransferases modification on heparin anticoagulant activity.
图选项




3 结论通过分析动物源肝素的二糖结构,我们证明了动物源肝素中大量糖残基未被硫酸化,导致其抗凝血活性低。本研究中,通过优化鸡HS2ST、HS6ST和老鼠HS3ST在重组P. pastoris GS115中的异源表达,建立了酶法催化动物源肝素硫酸化的策略。通过重组HS2ST、HS6ST和HS3ST催化后,动物源肝素的抗凝血活性提高至(189±17) IU/mg,达到临床使用标准。基于HS2ST、HS6ST和HS3ST多酶催化动物源肝素的策略为修饰动物源肝素提高其抗凝血活性提供了一条有效路径。

参考文献
[1]Rabenstein DL. Heparin and heparan sulfate: structure and function.Nat Prod Rep, 2002, 19(3): 312–331.DOI: 10.1039/b100916h
[2]Kang Z, Zhou ZX, Wang Y, et al. Bio-based strategies for producing glycosaminoglycans and their oligosaccharides.Trends Biotechnol, 2018, 36(8): 806–818.DOI: 10.1016/j.tibtech.2018.03.010
[3]Zulueta MML, Lin SY, Hu YP, et al. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions.Curr Opin Chem Biol, 2013, 17(6): 1023–1029.DOI: 10.1016/j.cbpa.2013.10.008
[4]Sasisekharan R, Venkataraman G. Heparin and heparan sulfate: biosynthesis, structure and function.Curr Opin Chem Biol, 2000, 4(6): 626–631.DOI: 10.1016/S1367-5931(00)00145-9
[5]Liu HY, Zhang ZQ, Linhardt RJ. Lessons learned from the contamination of heparin.Nat Prod Rep, 2009, 26(3): 313–321.DOI: 10.1039/b819896a
[6]Sina? P. Synthetic chemistry: sugars slide into heparin activity.Nature, 1999, 398: 377–378.DOI: 10.1038/18783
[7]Linhardt RJ. 2003 Claude S. Hudson award address in carbohydrate chemistry. Heparin: ?structure and activity.J Med Chem, 2003, 46(13): 2551–2564.DOI: 10.1021/jm030176m
[8]De Agostini AI, Dong JC, De Vantéry Arrighi C, et al. Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity.J Biol Chem, 2008, 283(42): 28115–28124.DOI: 10.1074/jbc.M805338200
[9]Kay R, Wong KS, Yu YL, et al. Low-molecular-weight heparin for the treatment of acute ischemic stroke.N Engl J Med, 1995, 333(24): 1588–1594.DOI: 10.1056/NEJM199512143332402
[10]Warkentin TE, Levine MN, Hirsh J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin.N Engl J Med, 1995, 332(20): 1330–1336.DOI: 10.1056/NEJM199505183322003
[11]Chen JH, Liu WC, Wang M, et al. Enzymatic synthesis of high anticogulant activity of low molecular heparin: CN, 201210172930.6. 2012-05-31 (in Chinese).
陈敬华, 刘卫超, 王敏, 等.一种酶法制备高活性低分子量肝素的方法.中国专利, 专利申请号: 201210172930.6. 2012-05-31.
[12]Chen Y. A method for the improved anticogulant of heparin: CN, 201810039595.X. 2018-01-16 (in Chinese).
陈荫.一种提高肝素抗凝血活性的方法.中国专利, 专利申请号: 201810039595.X. 2018-01-16.
[13]Fu L, Li K, Mori D, et al. Enzymatic generation of highly anticoagulant bovine intestinal heparin.J Med Chem, 2017, 60(20): 8673–8679.DOI: 10.1021/acs.jmedchem.7b01269
[14]Volpi N, Cusmano M, Venturelli T. Qualitative and quantitative studies of heparin and chondroitin sulfates in normal human plasma.Biochim Biophys Acta, 1995, 1243(1): 49–58.DOI: 10.1016/0304-4165(94)00123-F
[15]Paul P, Suwan J, Liu J, et al. Recent advances in sulfotransferase enzyme activity assays.Anal Bioanal Chem, 2012, 403(6): 1491–1500.DOI: 10.1007/s00216-012-5944-4
[16]Zhou ZX, Li Q, Huang H, et al. A microbial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans.Biotechnol Bioeng, 2018, 115(6): 1561–1570.DOI: 10.1002/bit.v115.6
[17]Zhang ZQ, McCallum SA, Xie J, et al. Solution structures of chemoenzymatically synthesized heparin and its precursors.J Am Chem Soc, 2008, 130(39): 12998–13007.DOI: 10.1021/ja8026345
[18]National Pharmacopoeia Committee. Pharmacopoeia of People's Repubic of China.Beijing: China Medical Science Press, 2015: 167-168(in Chinese).
国家药典委员会. 中华人民共和国药典.北京: 中国医药科技出版社, 2015: 167-168.
[19]Zhou XX, Chandarajoti K, Pham TQ, et al. Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate.Glycobiology, 2011, 21(6): 771–780.DOI: 10.1093/glycob/cwr001
[20]Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused.Protein Sci, 1999, 8(8): 1668–1674.DOI: 10.1110/(ISSN)1469-896X
[21]Raje S, Thorpe C. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: ?role of a thioredoxin domain in disulfide bond formation.Biochemistry, 2003, 42(15): 4560–4568.DOI: 10.1021/bi030003z

相关话题/动物 结构 培养 肝素 细胞