清华大学 汽车安全与节能国家重点实验室, 北京 100084
收稿日期:2019-06-17
作者简介:宋健(1957—), 男, 教授。E-mail:daesj@tsinghua.edu.cn
摘要:基于轮胎侧偏的差动转向是一种可用于大曲率半径转向场景的转向方式。该文建立了分布式驱动车辆的仿真模型,分析了基于轮胎侧偏的差动转向过程,建立了系统的状态方程,分析了系统的稳定性和能控性,讨论了差动转向的转向能力及其影响因素。基于稳态转向参考力矩模型,提出了一种基于模糊推理前馈补偿的控制方法。仿真结果表明:该方法可以提升系统响应的快速性,对不同车速下的转向需求均有良好的适应性。
关键词:差动转向模糊推理前馈补偿转向控制轮胎侧偏特性
Control of a tire-cornering based differential steering system
SONG Jian, ZHAO Wenzong, DAI Yaqi, CHENG Shuai, LI Fei
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Abstract: Differential steering based on the tire cornering characteristics is applicable to large-radius curves. This paper presents a model of an independently driven four wheel electric vehicle. The state-space equation for the differential steering system is used to analyze the stability and controllability and to analyze the factors influencing the steering ability. A steady-state steering torque model is used in a control method based on fuzzy inference feedforward compensation. Simulations show that the control algorithm not only improves the system response time but is also adaptable to different steering needs at different speeds.
Key words: differential steeringfuzzy inferencefeedforward compensationsteering controltire cornering characteristics
分布式驱动系统一般包含多个驱动电机,每个轮胎的驱动和制动力矩能够独立控制。与传统驱动方式相比,分布式驱动可以带来更为多样化的控制效果,差动转向便是其中之一。差动转向是指主动利用车辆左右侧不相等的驱动或制动力矩进行转向。差动转向技术目前有3个研究方向:1)差动助力转向;2)有转向机构车辆的差动转向;3)无转向机构车辆的差动转向。
差动助力转向是一种利用差动力矩减轻驾驶员的转向手力的技术。王军年[1]通过道路试验证明该技术确实能够有效减轻驾驶员的转向手力,并且能够动态调节路感。差动转向则是利用差动力矩直接转向。对于有转向机构的车辆,差动力矩可以带动转向机构偏转,使车辆转向。景晖[2]通过试验验证了这种差动转向方式的有效性。对于无转向机构车辆的差动转向,相关研究最多。这种类型车辆结构简单,机动性强,可以原地转向,常应用于探测车、工业轮式机器人等[3-4]。无转向机构车辆在转向时,轮胎与地面往往会发生滑动,故国外常称这种转向方式为滑动转向。
差动转向的控制系统一般分为3层:转向控制层、驱动力分配层和车轮扭矩控制层[5]。多种转向控制方法被应用到转向控制层的设计中。Lucet等[6]应用滑模控制方法完成了转向控制器的设计。Choi等[7]直接采用了比例-积分-微分(proportion- integral-differential, PID)控制方法跟踪期望的差动力矩。Jin等[8]应用抗饱和积分算法,进一步考虑了路面附着条件,确保执行器在路面附着限制范围内输出。Elshazly等[9]利用线性二次型调节器(linear quadratic regulator, LQR)设计了反馈控制器,并加入了前馈补偿环节。这些方法均能够使系统跟踪目标横摆角速度。驱动力分配层将横摆力矩和纵向力分配到每个车轮上,通常采用最小化轮胎负荷率法,使车辆整体有更高的路面附着余量[10-12]。扭矩控制层一般则通过观测车轮滑移率,控制执行器使轮胎达到期望的纵向力[13]。
本文研究对象为封闭园区内的低速物流车。该类车辆的独特之处在于它们仅需要具有大曲率半径场景下的转弯能力即可,无需原地转向,同时时速低,路线相对固定。针对该类车辆转向需求的特点,本文提出了一种基于轮胎侧偏的差动转向技术,充分利用轮胎侧偏特性,可以减少轮胎侧向滑移,同时可以节省转向机构,简化车辆设计,从而降低成本。
本文基于Simulink建立了分布式车辆的仿真模型,分析差动转向过程, 建立了差动转向系统的状态方程,分析系统的稳定性,推导得出了稳态转向参考转矩。在此基础上,探究了差动转向系统的转向能力及其影响因素。应用模糊推理的思想,为该类车辆设计了一种基于模糊推理前馈补偿的控制方法。最后进行仿真,验证了所提控制方法的有效性。
1 分布式驱动车辆建模1.1 车辆模型为了分析差动转向车辆的转向特性,本文建立了7自由度的整车模型, 如图 1所示。模型包含了车身纵向、横向、横摆方向和4个车轮的转动方向的动力学方程。
图 1 7自由度整车模型俯视图 |
图选项 |
车身纵向:
$\begin{array}{*{20}{c}}{m\left( {\dot u - v\omega } \right) = \left( {{F_{x{\rm{fl}}}} + {F_{x{\rm{fr}}}}} \right)\cos \delta - }\\{\left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right)\sin \delta + {F_{x{\rm{rl}}}} + {F_{x{\rm{rr}}}}.}\end{array}$ | (1) |
$\begin{array}{*{20}{c}}{m\left( {\dot v + u\omega } \right) = \left( {{F_{x{\rm{fl}}}} + {F_{x{\rm{fr}}}}} \right)\sin \delta + }\\{\left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right)\cos \delta + {F_{y{\rm{rl}}}} + {F_{y{\rm{rr}}}}.}\end{array}$ | (2) |
$\begin{array}{l}{I_z}\dot \omega = a\left[ {\left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right)\sin \delta + \left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right)\cos \delta } \right] - \\\;\;\;\;\;\;\;\;\;b\left( {{F_{y{\rm{rl}}}} + {F_{y{\rm{rr}}}}} \right) + \frac{B}{2}\left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right)\sin \delta + \\\;\;\;\;\;\;\;\;\;\frac{B}{2}\left[ {\left( {{F_{x{\rm{fr}}}} - {F_{x{\rm{fl}}}}} \right)\cos \delta + \left( {{F_{x{\rm{rr}}}} - {F_{x{\rm{rl}}}}} \right)} \right].\end{array}$ | (3) |
${I_{\rm{w}}}{{\dot w}_i} = {T_{ti}} - {T_{bi}} - r{F_{xi}},\;\;\;i = {\rm{f}}1,{\rm{ fr, rl}},rr.$ | (4) |
在转向过程中,内外侧车轮会出现载荷转移,影响轮胎的动力学特性。Fzi表示车辆4个车轮的垂向载荷,hg为质心高度,轮胎载荷转移可用式(5)表示:
$\begin{array}{l}{F_{z{\rm{fl}}}} = \frac{{mgb}}{{2L}} - \frac{{m{a_x}{h_{\rm{g}}}}}{{2L}} - \frac{{m{a_y}b{h_{\rm{g}}}}}{{BL}},\\{F_{z{\rm{fr}}}} = \frac{{mgb}}{{2L}} - \frac{{m{a_x}{h_{\rm{g}}}}}{{2L}} + \frac{{m{a_y}b{h_{\rm{g}}}}}{{BL}},\\{F_{z{\rm{rl}}}} = \frac{{mga}}{{2L}} + \frac{{m{a_x}{h_{\rm{g}}}}}{{2L}} - \frac{{m{a_y}a{h_{\rm{g}}}}}{{BL}},\\{F_{z{\rm{rr}}}} = \frac{{mga}}{{2L}} + \frac{{m{a_x}{h_{\rm{g}}}}}{{2L}} + \frac{{m{a_y}a{h_{\rm{g}}}}}{{BL}}.\end{array}$ | (5) |
$\begin{array}{*{20}{c}}{F\left( {x,{F_z}} \right) = }\\{D\sin \left( {C{\rm arctan}\left( {Bx} \right) - E\left( {Bx - \arctan \left( {Bx} \right)} \right)} \right).}\end{array}$ | (6) |
2 差动转向原理2.1 差动转向过程分析本文研究的是基于轮胎侧偏的差动转向,轮胎与地面不发生侧滑。转向时,一般会在车辆一侧施加驱动力矩,另一侧施加制动力矩,使车辆两侧产生方向不同的纵向力,从而产生式(7)所示的差动力矩M,此时式(3)化为式(8):
$M = \frac{B}{2}\left( {{F_{x{\rm{fr}}}} - {F_{x{\rm{fl}}}} + {F_{x{\rm{rr}}}} - {F_{x{\rm{rl}}}}} \right),$ | (7) |
${I_z}\dot \omega = a\left( {{F_{y{\rm{fl}}}} + {F_{y{\rm{fr}}}}} \right) - b\left( {{F_{y{\rm{rl}}}} + {F_{y{\rm{rr}}}}} \right) + M.$ | (8) |
1) 初始阶段。在直线行驶状态下,突然施加差动力矩M,此时轮胎尚未侧偏,而侧向力从0开始变化。式(8)右侧数值增大,使横摆角加速度
图 2 转向时前轴轮胎的侧偏现象 |
图选项 |
2) 轮胎侧偏阶段。此阶段轮胎受到地面侧向力的作用,侧向力将产生与M相反的力矩,抵消M的影响,
3) 稳态转向阶段。当侧向力产生的力矩与M大小相等时,式(8)右侧数值为0。车辆横摆角速度、侧偏角、侧向力均为定值。如果改变M的大小,横摆角加速度
2.2 系统稳定性与能控性为简化分析,假设车辆左右侧偏角相等,侧偏角用式(9)表示。假设轮胎处于线性区域,侧向力可表示为侧偏角和侧向刚度的积。
$\left\{ {\begin{array}{*{20}{l}}{{\alpha _{\rm{f}}} = \beta + \frac{{a\omega }}{u},}\\{{\alpha _{\rm{r}}} = \beta - \frac{{b\omega }}{u}.}\end{array}} \right.$ | (9) |
$\mathit{\boldsymbol{x}} = {[\omega \quad \beta ]^{\rm{T}}},\;\;{u_{\rm{c}}} = M.$ | (10) |
$\mathit{\boldsymbol{\dot x}} = \mathit{\boldsymbol{Ax}} + \mathit{\boldsymbol{B}}{u_{\rm{c}}}.$ | (11) |
$\begin{array}{*{20}{c}}{\mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{l}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right] = }\\{\left[ {\begin{array}{*{20}{c}}{\frac{2}{{u{I_z}}}\left( {{a^2}{k_{\rm{f}}} + {b^2}{k_{\rm{r}}}} \right)}&{\frac{{2\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)}}{{{I_z}}}}\\{\frac{{2\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)}}{{m{u^2}}} - 1}&{\frac{{2\left( {{k_{\rm{f}}} + {k_{\rm{r}}}} \right)}}{{mu}}}\end{array}} \right],}\\{\mathit{\boldsymbol{B}} = {{\left[ {\begin{array}{*{20}{l}}{1/{I_z}}&0\end{array}} \right]}^{\rm{T}}}.}\end{array}$ | (12) |
${a_{11}}{a_{22}} - {a_{12}}{a_{21}} = \frac{{4{L^2}{k_{\rm{f}}}{k_{\rm{r}}}}}{{{I_z}m{u^2}}} + \frac{{2\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)}}{{{I_z}}} > 0.$ | (13) |
$\mathit{\boldsymbol{G}} = \left[ {\begin{array}{*{20}{l}}\mathit{\boldsymbol{B}}&{\mathit{\boldsymbol{AB}}}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{1/{I_z}}&{\frac{2}{{uI_z^2}}\left( {{a^2}{k_{\rm{f}}} + {b^2}{k_{\rm{r}}}} \right)}\\0&{\frac{{2\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)}}{{{I_z}m{u^2}}} - \frac{1}{{{I_z}}}}\end{array}} \right].$ | (14) |
${u^2} \ne \frac{{2\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)}}{m}.$ | (15) |
稳态转向中,系统角加速度
$ - 2a{k_{\rm{f}}}{\alpha _{\rm{f}}} + 2b{k_{\rm{r}}}{\alpha _{\rm{r}}} + M = 0,$ | (16) |
$2{k_{\rm{f}}}{\alpha _{\rm{f}}} + 2{k_{\rm{r}}}{\alpha _{\rm{r}}} = mu\omega .$ | (17) |
${\left( {\frac{\omega }{M}} \right)_{\rm{s}}} = \frac{{\left( {{k_{\rm{f}}} + {k_{\rm{r}}}} \right)u}}{{\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)m{u^2} - 2{k_{\rm{f}}}{k_{\rm{r}}}{L^2}}}.$ | (18) |
$u \approx \omega R.$ | (19) |
$R = \frac{{\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)m{u^2} - 2{k_{\rm{f}}}{k_{\rm{r}}}{L^2}}}{{\left( {{k_{\rm{f}}} + {k_{\rm{r}}}} \right)M}}.$ | (20) |
2.4 差动转向系统的转向能力差动转向车辆的转向能力由式(20)给出。首先,分析式(20)的分子部分。现代轿车稳定性因数
akf-bkr对转向半径的影响,以下分类进行讨论:
1) akf-bkr=0,车辆具有中性转向特性,式(20)第1项为0。影响转向半径的主要因素为车辆轴距L和轮胎的侧偏刚度。L2与转向半径R成正比,轴距小的车辆的转向半径R较小。转向半径R随着侧偏刚度减小而减小,采用侧偏刚度较小的轮胎,转向半径将较小。
2) akf-bkr>0,车辆具有不足转向特性。此时,式(20)分子第1项为正,具有减小转向半径的效果。对质量越大、速度越大的车辆,该效果越明显。
3) akf-bkr<0, 车辆具有过多转向特性。此时,式(20)分子第1项为负,与第2项同号,叠加后有增大转向半径的效果。同样地,对质量越大、速度越大的车辆,该效果越明显。
根据以上讨论,影响差动转向系统的转向半径的因素主要是轴距、轮胎侧偏刚度和差动力矩。轴距越小,轮胎侧偏刚度越小,差动力矩越大,则转向半径越小。其中,轴距一般根据车辆用途、道路条件设计确定,可变动性小。差动力矩作为系统控制量,变化范围应尽量大。在车辆轮距确定的情况下,选取纵向力的极限值更大的轮胎,可以产生更大的差动力矩,增大控制量的变化范围。轮胎的侧偏特性则是限制最大转向能力的关键因素。综合来看,侧偏刚度低、线性区间大的轮胎更适用于差动转向车辆。如图 3所示,假设存在A、B、C 3种侧偏特性的轮胎。轮胎B与轮胎A比较,侧偏刚度更低,故同一差动力矩下,转向半径更小。轮胎B与轮胎C比较,轮胎B线性区间更长,系统可以承受更大的差动力矩,从而降低了转向半径。故3个轮胎中,轮胎B的最小转向半径最小。
图 3 不同侧偏特性的轮胎示例 |
图选项 |
3 差动转向系统控制器设计3.1 差动转向系统的控制结构现代汽车一般具有不足转向特性[15],设计中满足akf-bkr>0的条件。根据2.2节分析,该条件下系统是稳定可控的。因此,一般情况下,加入反馈环节即可控制差动转向系统。但是,由于差动转向系统通过控制纵向力间接转向,而不是像传统转向方式那样采用几何约束直接控制转向,系统响应的快速性和对不同工况的适应性均较差。因此,在本文控制器设计中,将着重考虑提升系统的响应快速性及其对不同转向工况的适应能力。
由式(18)可以推出式(21),即可以用转向需求ωdes计算稳态转向的参考力矩M,
$M = \frac{{\left( {a{k_{\rm{f}}} - b{k_{\rm{r}}}} \right)m{u^2} - 2{k_{\rm{f}}}{k_{\rm{r}}}{L^2}}}{{\left( {{k_{\rm{f}}} + {k_{\rm{r}}}} \right)u}}{\omega _{{\rm{des}}}}.$ | (21) |
综上所述,本文构建了如图 4所示的差动转向系统的控制框架。当上层控制器发出转向需求ωdes时,系统会根据当前车速u和ωdes, 由模糊控制器输出轮胎的侧偏刚度值。然后,由前馈环节根据式(21)计算出参考差动力矩M0。M0与反馈环节计算的力矩Mpid相加,得到差动力矩M。最后,驱动力分配模块将M分解为4个轮胎的驱动力矩或制动力矩, 输出给车辆模型。
图 4 基于模糊前馈-反馈的转向控制系统结构 |
图选项 |
3.2 模糊推理器设计对于确定的车辆、路面和轮胎条件,在转向过程中,轮胎侧偏刚度主要的影响因素是侧向加速度与车辆的转向半径。轮胎一般具有图 3所示的侧偏特性,期望转向半径越小,轮胎侧偏角将越大,轮胎侧偏刚度会下降。转向过程中,轮胎会出现载荷转移,侧向加速度越大,左右车轮垂直载荷的差别越大,平均侧偏刚度越小[15]。本文据此先验知识设计了模糊推理器, 推算轮胎侧偏刚度。
选取期望侧向加速度ay_des和期望曲率κ作为模糊输入变量。它们与上层的输入车速u和横摆角速度大小|ωdes|的关系为
$\left\{ {\begin{array}{*{20}{l}}{{a_{y\_{\rm{des}}}} = u\left| {{\omega _{{\rm{des}}}}} \right|,}\\{\kappa = \frac{{\left| {{\omega _{{\rm{des}}}}} \right|}}{u}.}\end{array}} \right.$ | (22) |
表 1 模糊规则表
ay_des | κ | ||||||
NB | NM | NS | Z | PS | PM | PB | |
Z | PB | PM | PS | Z | NS | NM | NB |
PS | PB | PS | Z | Z | NS | NM | NB |
PM | PB | PS | Z | NS | NM | NM | NB |
PB | PM | Z | NS | NS | NM | NB | NB |
表选项
运用模糊规则表前,需要进行模糊化,把变量映射成模糊子集的隶属度函数值。设ay_des实际论域为[0, amax],κ的实际论域为[0, κmax],用式(23)计算比例因子。解模糊采用面积重心法,将模糊推理得到的模糊结果映射为轮胎侧偏刚度的估计值。
$\left\{ {\begin{array}{*{20}{l}}{{k_a} = \frac{3}{{{a_{\max }}}},}\\{{k_\kappa } = \frac{6}{{{\kappa _{\max }}}}.}\end{array}} \right.$ | (23) |
$T = \left| {\frac{{MB}}{{2{R_{\rm{w}}}}}} \right|.$ | (24) |
4 仿真结果根据第1节内容,本文利用Simulink建立了分布式驱动车辆模型,并建立了基于模糊推理前馈的差动转向控制系统模型。仿真主要参数设置如表 2所示。
表 2 仿真主要参数设置
参数 | 数值 |
汽车质量M/kg | 1 129 |
轴距L/m | 2.4 |
轮距B/m | 2.0 |
前轴到质心距离a/m | 1.20 |
后轴到质心距离b/m | 1.20 |
绕z轴转动惯量Iz/(kg·m2) | 1 465 |
车轮滚动半径rw/m | 0.317 |
表选项
4.1 基于模糊前馈的差动转向控制器仿真以下将本文设计的基于模糊推理前馈(fuzzy inference feedforward compensation, FFC)的控制方法与常见的基于比例-积分(proportion-integral, PI)的控制方法进行对比。在车辆速度为15 km/h时,上层控制器输入ωdes=0.25 rad/s的阶跃信号。图 5显示了2种控制方法下车辆的横摆角速度响应。可以看出,本文设计的FFC控制器的响应速度更快。当输入为动态变化的信号时,响应速度的差异将更为明显。图 6显示了车速为15 km/h、上层控制器输入正弦信号ωdes=0.25 sin(πt) rad/s时系统的响应情况。结果显示,在正弦输入激励下,FFC控制器对期望横摆角速度的跟随情况更好,滞后显著小于PI控制器。图 7显示了4种不同工况下这2种控制方法的控制结果。可以看出,不同工况下,FFC控制器响应速度更快,适应能力更强,受车速及期望横摆角速度的影响较小。
图 5 阶跃输入下的转向系统响应 |
图选项 |
图 6 正弦输入下的转向系统响应 |
图选项 |
图 7 不同转向需求下系统响应 |
图选项 |
4.2 差动转向与方向盘转向的系统响应对比下面通过对比差动转向和方向盘转向下系统的响应,来分析差动转向的特征。在速度为15 km/h时进行仿真实验,对方向盘转向车辆输入方向盘转角,使车辆产生0.25 rad/s的横摆角速度,对差动转向车辆,直接设置上层控制器输入为ωdes=0.25 rad/s。
图 8显示了系统的横摆角速度响应情况。可以看出,差动转向方式的转向系统有较大的超调量,而方向盘转向的转向系统没有超调,稳定性更好。
图 8 差动转向与方向盘转向系统的横摆角速度响应 |
图选项 |
图 9显示了转向过程中前后轮的侧偏角的变化。仿真结果显示,对于方向盘转向的车辆,前后轮的侧偏角均较小。仿真条件下,稳态转向时侧偏角约为0.8 °左右,方向一致,前后轮的侧向力均指向转向内侧。对于差动转向的车辆,稳态转向时轮胎侧偏具有以下2个明显的特点:
图 9 转向过程中轮胎侧偏角变化曲线 |
图选项 |
1) 前后轮侧偏角方向不一致。前轮侧向力指向转向外侧,后轮侧向力指向转向内侧。
2) 后轮的侧向力需要大于前轮的侧向力。这是因为轮胎侧向力合力的方向需要指向转向内侧,以提供向心力。在这种情况下,后轮侧偏角的绝对值一般大于前轮,因此在差动转向系统临近失稳时,后轮一般先于前轮发生侧滑。
图 10显示了仿真时间内,车辆质心的运动轨迹。可以看出,两种转向方式下,尽管系统横摆角速度的值相差不大,但差动转向车辆轨迹与期望轨迹的偏差明显增大。产生该结果的原因是:在转向初始阶段,质心绝对加速度ay的差异较大。方向盘转向时,方向盘输入突变,使前轮侧偏角迅速变化,如图 9所示,侧向力存在突变现象,侧向力的合力从较大值变化到稳态值;而差动转向下,侧向力合力是从0开始变化到稳态值的,因此差动转向车辆的质心轨迹更偏向外侧。
图 10 车辆质心运动轨迹 |
图选项 |
5 结论本文针对分布式驱动车辆,基于Simulink建立了仿真模型,分析了所研究的差动转向系统的稳定性和能控性,得到了差动转向系统稳态转向下的横摆角速度增益公式,据此进一步分析了影响差动转向的转向能力的因素。针对差动转向的不足,本文提出了一种基于模糊前馈补偿的差动转向控制方法,设计了控制器,提升了系统响应快速性和对不同工况的适应性。此外,本文还对比了方向盘转向与差动转向对不同阶跃输入的响应情况。仿真结果显示,差动转向的稳定性要差于方向盘转向。在转向初期,由于差动转向下的侧向力变化滞后于方向盘转向,差动转向车辆的质心轨迹将更偏外侧,后期进一步优化时应当重视这一差别。
参考文献
[1] | 王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春: 吉林大学, 2009. WANG J N. Study on differential drive assist steering technology for electric vehicle with independent-motorized-wheel-drive[D]. Changchun: Jilin University, 2009. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10183-2009091367.htm |
[2] | 景晖.基于差动转向的分布式直驱电动汽车鲁棒控制方法研究[D].南京: 东南大学, 2017. JING H. Robust control for four-wheel independently actuated electric vehicles based on differential steering[D]. Nanjing: Southeast University, 2017. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10286-1018002801.htm |
[3] | IIDA M, NAKASHIMA H, TOMIYAMA H, et al. Small-radius turning performance of an articulated vehicle by direct yaw moment control[J]. Computers and Electronics in Agriculture, 2011, 76(2): 277-283. DOI:10.1016/j.compag.2011.02.006 |
[4] | KOZLOWSKI K, PAZDERSKI D. Modeling and control of a 4-wheel skid-steering mobile robot[J]. International Journal of Applied Mathematics and Computer Science, 2004, 14(4): 477-496. |
[5] | KANG J, KIM W, LEE J, et al. Skid steering-based control of a robotic vehicle with six in-wheel drives[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2010, 224(11): 1369-1391. DOI:10.1243/09544070JAUTO1405 |
[6] | LUCET E, GRAND C, SALLE D, et al. Dynamic yaw and velocity control of the 6WD skid-steering mobile robot RobuROC6 using sliding mode technique[C]//Intelligent Robots and Systems. St. Louis, USA, 2009: 4220-4225. https://www.researchgate.net/publication/224090807_Dynamic_yaw_and_velocity_control_of_the_6WD_skid-steering_mobile_robot_RobuROC6_using_sliding_mode_technique |
[7] | CHOI J Y, KIM D H, KIM C J, et al. A study on an independent steering and driving control algorithm for 6WS/6WD vehicles[C]//International Conference on Control, Automation and Systems. Gyeonggi-do, South Korea, 2010: 1491-1495. https://www.researchgate.net/publication/241177375_A_study_on_an_independent_steering_driving_control_algorithm_for_6WS6WD_vehicles |
[8] | JIN C, XIONG L, YU Z, et al. Path following control for skid steering vehicles with vehicle speed adaption[J]. SAE Technical Paper, 2014, 1: 2014-01. |
[9] | ELSHAZLY O, ABO-ISMAIL A ABBAS H S, et al. Skid steering mobile robot modeling and control[C]//The 2014 UKACC 10th International Conference on Control. Loughborough, UK, 2014. https://www.researchgate.net/publication/262486727_Skid_Steering_Mobile_Robot_Modeling_and_Control |
[10] | ANWAR S, ZHENG B. An antilock-braking algorithm for an eddy-current-based brake-by-wire system[J]. IEEE Transactions on Vehicular Technology, 2007, 56(3): 1100-1107. DOI:10.1109/TVT.2007.895604 |
[11] | HE P, HORI Y. Optimum traction force distribution for stability improvement of 4WD EV in critical driving condition[C]//9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey, 2006. https://www.researchgate.net/publication/4242130_Optimum_traction_force_distribution_for_stability_improvement_of_4WD_EV_in_critical_driving_condition |
[12] | MOKHIAMAR O, ABE M. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control[J]. Journal of Dynamic Systems Measurement and Control:Transactions of the ASME, 2004, 126(4): 753-763. DOI:10.1115/1.1850533 |
[13] | TAEHYUN S, SEHYUN C, SEOK L. Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems[J]. IEEE Transactions on Vehicular Technology, 2008, 57(2): 747-759. DOI:10.1109/TVT.2007.905391 |
[14] | PACEJKA H B, BESSELINK I J M. Magic formula tire model with transient properties[J]. Vehicle System Dynamics, 1997, 27(S1): 234-249. |
[15] | 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009: 148. YU Z S. Automobile theory[M]. Beijing: China Machine Press, 2009: 148. (in Chinese) |
[16] | KODAGODA K R S, WIJESOMA W S, TEOH E K. Fuzzy speed and steering control of an AGV[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1): 112-120. DOI:10.1109/87.974344 |
[17] | ZHANG J, ZHANG Y, CHEN L, et al. A fuzzy control strategy and optimization for four wheel steering system[C]//IEEE International Conference on Vehicular Electronics and Safety. Beijing, 2008. https://www.researchgate.net/publication/4321056_A_fuzzy_control_strategy_and_optimization_for_four_wheel_steering_system |