删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

频谱共享系统中基于大尺度信道状态信息的资源优化

本站小编 Free考研考试/2020-04-15

赵俊韬 , 冯伟 , 赵明 , 王京
清华大学 电子工程系, 北京 100084

收稿日期: 2015-10-29
基金项目: 国家自然科学基金资助项目(61201192);国家“八六三”高技术项目(2014AA01A703);国家重点基础研究发展规划项目(2012CB316000);国家科技重大专项课题(2015ZX03001016-002)
作者简介: 赵俊韬(1986-),男,博士研究生
通讯作者: 王京,教授,E-mail:wangjing@tsinghua.edu.cn

摘要:在基于分布式天线的频谱共享系统(DSSS)中,信道分配和天线选择优化是提升系统性能的重要手段。为了有效控制资源优化的系统开销,研究基于大尺度信道状态信息的联合信道分配和天线选择方法。以次用户的和速率为优化目标建立了优化问题模型,通过变量松弛将整数规划问题转化为线性规划问题求解,降低了复杂度。仿真结果表明:仅仅依靠大尺度信道状态信息仍能够显著提升系统的和速率性能。在实际应用中,系统开销严格受限,该方法为折中系统开销与性能增益提供了有效途径。
关键词: 移动通信 基于分布式天线的频谱共享系统 信道分配 天线选择 大尺度信道状态信息
Resource optimization with large-scale channel state information for spectrum sharing systems
ZHAO Juntao, FENG Wei, ZHAO Ming, WANG Jing
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China


Abstract:In a distributed antenna-based spectrum sharing system (DSSS), both the channel allocation and the antenna selection are important issues for enhancing system performance. The system overhead can be controlled by a joint channel allocation and antenna selection scheme presented here that is based on only the large-scale channel state information. Particularly, the sum rate of the secondary users (SUs) is used as the optimization objective to formulate the optimization problem. The integer programming problem is transformed into a linear programming problem through variable relaxation to reduce the complexity. Simulations show that the system sum rate is significantly improved using only the large-scale channel state information. In practical applications where the system overhead is strictly limited, this scheme offers an effective way to balance the system overhead and performance gain.
Key words: mobile communicationdistributed antenna-based spectrum sharing systemchannel allocationantenna selectionlarge-scale channel state information
频谱共享是移动通信中认知无线电技术的核心内容[1],它允许次用户在满足主用户设定的干扰约束的前提下接入授权频谱,可显著提高无线频谱的利用率。若频谱共享系统中次用户基站采用分布式天线的架构[2-4],可以降低次用户的平均接入距离,提高次用户的容量,并有效控制对主用户的干扰[5],该系统称为基于分布式天线的频谱共享系统(DSSS),如图 1所示。该系统中次用户能重复使用主用户系统的无线信道,并在在满足主用户干扰约束的前提下提高次用户系统的整体性能。
图 1 基于分布式天线的频谱共享系统示意图
图选项





为了挖掘DSSS中分布式天线架构提供的性能优势[6],文[7]在确保不超过主用户干扰门限的情况下,优化了次用户系统的天线位置,以获得更大的系统平均容量。文[8]研究了DSSS中的天线选择问题,在全信道状态信息条件下,提出了优化搜索的方法来得到最优的天线选择方案。文[9]进一步在全信道状态信息条件下,分析了联合信道分配和天线选择问题,采用了人工鱼群算法提出了问题的次优求解思路。
已有研究工作表明,信道分配和天线选择是提升DSSS系统性能的重要手段。但是,这些工作大多假设了完全信道状态信息条件。而在实际系统中,信道状态信息的获得需要付出相应的系统开销如发送导频序列等。研究表明,当信道数和天线数较多时,获取完全信道状态信息会带来巨大的系统开销[10]
为了有效控制资源优化的系统开销,本文研究基于大尺度信道状态信息的联合信道分配和天线选择问题。大尺度信道状态的变化相对缓慢,因此能够以可控的系统开销获得。在系统和速率最大化目标下,问题建模为整数规划问题。进一步提出了基于变量松弛的低复杂度问题求解方法。仿真结果表明,仅仅获取大尺度信道状态信息可有效控制降低系统开销,同时能显著提升系统的和速率性能。
1 系统模型本文考虑典型的多用户多信道DSSS模型。系统中分布式天线数目设为N,这些天线单元进一步组成K个天线簇,每簇天线数量为nk,则$\sum\limits_{k=1}^{k}{{{n}_{k}}}=N$。假定系统中存在M个次用户,不失一般性,第m个次用户的天线数设为Am。考虑F个可用信道,第f信道的带宽和干扰门限分别为Wf和Tf
在上述参数基础上,若第m个次用户选择了第簇天线和第f个信道,则其接收信号可表示为
${{y}_{mkf}}={{H}_{mkf}}{{L}_{mkf}}{{x}_{kf}}+{{z}_{mf}}.$ (1)
其中xkf是第k簇天线在第f个信道上的发送信号,其功率为PkfHmkf表示第m个次用户与第k簇天线之间在第f个信道上的小尺度信道状态信息,是一个Am×nk维的复Gauss随机矩阵; zmf是Gauss白噪声,服从Gauss分布; Lmkf表示第m个次用户与第k簇天线在第f个信道上的大尺度信道状态信息,是一个nk×nk维的对角矩阵,可表示为
${{L}_{mkf}}=\begin{matrix} l_{mkf}^{\left( 1 \right)} & 0 & \ldots & 0 \\ 0 & l_{mkf}^{\left( 2 \right)} & 0 & 0 \\ \vdots & \vdots & {} & \vdots \\ 0 & 0 & \ldots & l_{mkf}^{({{n}_{k}})} \\\end{matrix}$
其中$l_{mkf}^{\left( i \right)}=\sqrt{D_{mkf}^{\left( i \right)}-\gamma S_{mkf}^{\left( i \right)}},D_{mkf}^{\left( i \right)}$Smkf(i)是独立变量,分别表示路径衰落和阴影衰落,γ是路径损耗因子,{Smkf(i)|,i=1,2,…,nk}是独立随机变量,其概率密度函数为
${{f}_{s}}(s)=\frac{1}{\sqrt{2\pi }\lambda {{\sigma }_{s}}s}exp-\frac{{{(lns)}^{2}}}{2{{\lambda }^{2}}\sigma _{s}^{2}},s\ge 0.$
其中σs是阴影衰落的标准差,$\lambda =\frac{ln10}{10}$
2 资源优化问题与求解根据式(1),第m个次用户选择了第k簇天线和第f信道时,平均可达速率为:
$\begin{align} & {{C}_{m,k,f}}={{W}_{f}}E\{lb[det[{{I}_{{{A}_{m}}}}+ \\ & \frac{1}{{{\sigma }^{2}}}({{H}_{mkf}}{{L}_{mkf}}){{P}_{kf}}{{({{H}_{mkf}}{{L}_{mkf}})}^{H}}]]\}. \\ \end{align}$ (2)
其中E{·}表示对小尺度信道信息的期望运算符。期望运算本质上是个积分,因此式(2)并不是闭式的。为了简化系统的平均可达速率,引入如下近似表达式[11]
${{C}_{m,k,f}}\approx {{W}_{f}}\sum\limits_{i=1}^{{{n}_{k}}}{lb1+\frac{{{[{{l}_{i}}]}^{2}}{{p}_{i}}{{A}_{m}}}{W{{\sigma }^{2}}}}+{{A}_{m}}lbW-{{A}_{m}}lb[e(1-{{W}^{-1}})].$ (3)
其中$W=1+\sum\limits_{i=1}^{{{n}_{k}}}{\frac{{{[{{l}_{i}}]}^{2}}{{p}_{i}}}{2{{\sigma }^{2}}+{{[{{l}_{i}}]}^{2}}{{p}_{i}}{{W}^{-1}}{{A}_{m}}}}$是对角阵Lmkf的第i个对角元素,pi是对角阵Pkf的第i个对角元素。
令αmkf表示信道分配和天线选择的指示因子,如果第m个次用户分配了信道f,选择了天线簇k,那么αmkf=1; 否则αmkf=0。为了避免次用户之间的互相干扰,考虑每个信道只分配给一个次用户,同样为了减少共信道干扰,假定每簇天线只能为一个次用户服务。次用户传输时必须保证在每个信道上的干扰都要小于干扰门限,因此可以得到:
$\sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{{{a}_{mkf}}tr}}({{{\hat{L}}}_{kf}}{{P}_{kf}})\le {{T}_{f}},f=1,2,\cdots ,F.$
其中${{{\hat{L}}}_{kf}}$是天线簇k在信道f上对主用户系统的干扰信道系数。
基于以上分析,提出如下优化问题:
$\begin{align} & \underset{\left\{ {{a}_{m}},k,f \right\}}{\mathop{\max }}\,\sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}}{{C}_{m,k,f}}}}, \\ & s.t.\sum\limits_{m=1}^{M}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}\le }}1,k=1,2,\cdots ,K; \\ & \sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{{{a}_{m,k,f}}\le 1,f=1,2,\cdots .F;}} \\ & \sum\limits_{m=1}^{M}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}\le 1,m=1,2,\cdots ,M;}} \\ & \sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{{{a}_{m,k,f}}tr({{L}_{kf}}{{P}_{kf}})\le {{T}_{f}}}} \\ & {{a}_{m,k,f}}\in \{0,1\}. \\ \end{align}$ (4)
不难看出,这是一个0—1整数规划问题。下面提出对该问题的化简方法。
由于天线的发送功率是固定的,可以计算出每簇天线在给定信道f上对主用户的干扰,据此可以排除掉一部分信道和一部分天线,以降低备选信道和备选天线的数量。具体地,如果某个信道f在任意天线发送情况下产生的干扰都大于Tf,那么该信道称为坏信道,可以将该信道排除,即αmkf=0,m=1,…,M; k=1,…,K。如果某簇天线在工作时,在任意信道上f的干扰都会大于Tf,那么该天线称为坏天线,可以将该天线排除,即αmkf=0,m=1,…,M; f=1,…,F。如果某簇天线k在工作时对信道f的干扰大于Tf,那么称天线k和信道f的连接为坏连接,可以将它排除,即αmkf=0,m=1,…,M,由此可以将原问题进行化简。在去除掉所有的坏信道、坏天线和坏连接后,备选集合处于可控的范围内,进一步将αm,k,f从{0,1}松弛到[0,1],这样便得到了一个连续的线性规划问题:
$\begin{align} & \underset{\left\{ {{a}_{m}},k,f \right\}}{\mathop{\max }}\,\sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}}{{C}_{m,k,f}}}}, \\ & s.t.\sum\limits_{m=1}^{M}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}\le }}1,k=1,2,\cdots ,K; \\ & \sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{{{a}_{m,k,f}}\le 1,f=1,2,\cdots .F;}} \\ & \sum\limits_{m=1}^{M}{\sum\limits_{f=1}^{F}{{{a}_{m,k,f}}\le 1,m=1,2,\cdots ,M;}} \\ & {{a}_{mkf}}\le \frac{1}{2}+\frac{1}{2}\operatorname{sign}[{{T}_{f}}-tr({{L}_{kf}}{{P}_{kf}})]; \\ & {{a}_{m,k,f}}\in [0,1]. \\ \end{align}$ (5)
该问题是一个线性规划问题,可借助成熟的优化工具高效求解[12, 13]。得到的解{αmkf}中,对于第m个次用户,令{αmkf,k=1,2,…,K;f=1,2,…,F}中值最大的元素等于1,表明第m个次用户选择了第k簇天线和第f个信道,其他的元素为0,这样得到了就联合信道分配和天线选择问题的解{α*mkf}。
3 仿真分析本节通过仿真来验证所提出算法的有效性,并分析采用大尺度信道状态信息对信道分配和天线选择的影响。考虑DSSS中次用户分布于一个圆形区域,区域半径为R=1 000 mM=4,K=4,F=6,路径损耗因子为γ=4,阴影衰落的标准差取值σs=4,噪声功率设定为-100 dBm,主用户的干扰门限设定为-90 dBmWf在0~1中随机取值,功率将平均分配到每根天线。
首先分析将αm,k,f从{0,1}松弛到[0,1]的影响。定义松弛误差为
$\delta =\frac{1}{MKF}\sum\limits_{m=1}^{M}{\sum\limits_{k=1}^{K}{\sum\limits_{f=1}^{F}{|{{a}_{mkf}}-a_{mkf}^{*}|.}}}$ (6)
在总发送功率为10 dBm时,使用Monte Carlo方法仿真得到平均的误差δ=9.3×10-5,几乎可以忽略,因此可以认为简化问题和原问题的解是基本一致的。
其次对比基于全信道状态信息、基于大尺度信道状态信息和无信道状态信息的信道分配和天线选择方案的和速率性能,如图 2所示。在无信道状态信息的情况下,本文使用随机信道分配和天线选择。不失一般性,采用Monte Carlo法仿真了100个大尺度信道状态信息,每个大尺度信道状态信息都伴随着1 000个小尺度信道状态信息。可以看出,基于全信道状态信息和大尺度信道状态信息的方案得到的次用户的和速率差距并不很大,都要远优于无信道状态信息的方案。由于仅仅使用大尺度信道信息的方案需要的系统开销比基于全信道状态信息的方案更少,在实际应用中综合考量增益与开销,该方案具有显著的优势。
图 2 次用户和速率性能对比
图选项





4 结 论在DSSS中,信道和天线等资源的联合优化对于系统性能至关重要。由于小尺度信道状态信息往往高速动态变化,在进行信道分配和天线选择时,完全信道状态信息的获取需要较大的系统开销。本文从降低系统开销的角度,采用大尺度信道状态信息来进行联合信道分配和天线选择。具体地,以次用户的和速率为目标,建立了信道分配和天线选择的优化问题,通过变量松弛将0-1整数规划问题转化为线性规划问题求解,得到了信道分配和天线选择方案。仿真结果表明: 使用大尺度信道状态信息,仍能够获得较大的系统和速率增益。

参考文献
[1] Journal of Central South University(Science and Technology), 41(2):649-654.-->Haykin S. Cognitive radio:Brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2) : 201–220.DOI:10.1109/JSAC.2004.839380
[2] Journal of Central South University(Science and Technology), 41(2):649-654.-->FENG Wei, WANG Yanmin, GE Ning, et al. Virtual MIMO in multi-cell distributed antenna systems:coordinated transmissions with large-scale CSIT[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(10) : 2067–2081.DOI:10.1109/JSAC.2013.131009
[3] Journal of Central South University(Science and Technology), 41(2):649-654.-->WANG Yanmin, FENG Wei, XIAO Limin, et al. Coordinated multi-cell transmission for distributed antenna systems with partial CSIT[J]. IEEE Commun Lett, 2012, 16(7) : 1044–1047.DOI:10.1109/LCOMM.2012.050912.120383
[4] Journal of Central South University(Science and Technology), 41(2):649-654.-->FENG Wei, CHEN Yunfei, GE Ning, et al. Optimal energy-efficient power allocation for distributed antenna systems with imperfect CSI[J]. IEEE Trans Veh Technol, 2015 : 1–5.
[5] Journal of Central South University(Science and Technology), 41(2):649-654.-->赵俊韬, 冯伟, 肖立民, 等. 认知次用户系统中分布式天线的位置优化[J]. 清华大学学报(自然科学版), 2014, 54(12) : 1594–1597.ZHAO Juntao, FENG Wei, XIAO Limin, et al. Optimization of distributed antenna locations for cognitive secondary systems[J]. J Tsinghua Univ (Sci and Tech), 2014, 54(12) : 1594–1597.(in Chinese)
[6] Journal of Central South University(Science and Technology), 41(2):649-654.-->FENG Wei, LI Yunzhou, GAN Jiansong, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Netw Appl, 2011, 16(1) : 35–45.DOI:10.1007/s11036-009-0214-1
[7] Journal of Central South University(Science and Technology), 41(2):649-654.--> ZHAO Juntao, FENG Wei, ZHOU Chunhui, et al. Antenna Location Design for Distributed-Antenna Based Secondary Systems[C]//Proceedings of IEEE International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai, China:IEEE Press, 2012:1-4.
[8] Journal of Central South University(Science and Technology), 41(2):649-654.--> ZHANG Heli, JI Hong, LI Xi. RAU allocation for secondary users in cognitive WLAN over Fiber system:a HMM approach[C]//Proceedings of IEEE Wireless Communications and Networking Conference. Shanghai, China:IEEE Press, 2012:1416-1421.
[9] Journal of Central South University(Science and Technology), 41(2):649-654.--> SHAN Baokun, LI Xi, JI Hong, et al. Adaptive energy-efficient resource allocation for cognitive wireless local area network over fiber[C]//Proceedings of IET National Doctoral Academic Forum on Information and Communications Technology. Beijing, China:IET, 2013:1-5.
[10] Journal of Central South University(Science and Technology), 41(2):649-654.-->FENG Wei, GE Ning, LU Jianhua. Hierarchical transmission optimization for massively dense distributed antenna systems[J]. IEEE Communications Letters, 2015, 19(4) : 673–676.DOI:10.1109/LCOMM.2015.2401584
[11] Journal of Central South University(Science and Technology), 41(2):649-654.--> FENG Wei, LI Yunzhou, ZHOU Shidong, et al. Downlink capacity of distributed antenna systems in a multi-cell environment[C]//Proceedings of Wireless Communications and Networking Conference. Budapest, Hungary:IEEE Press, 2009:1-5.
[12] Journal of Central South University(Science and Technology), 41(2):649-654.--> Zavala-Diaz J C, Ruiz-Vanoye J A, Diaz-Parra O, et al. A solution to the strongly correlated 0-1 knapsack problem by a binary branch and bound algorithm[C]//Proceedings of Fifth International Joint Conference on Computational Sciences & Optimization. Harbin, China:IEEE Press, 2012:237-241.
[13] Journal of Central South University(Science and Technology), 41(2):649-654.-->Martello S, Toth P. An upper bound for the zero-one knapsack problem and a branch and bound algorithm[J]. European Journal of Operational Research, 1977, 1(3) : 169–175.DOI:10.1016/0377-2217(77)90024-8

相关话题/系统 信息

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 分布式天线系统中基于大尺度信道信息的功耗优化
    王璟1,王燕敏2,冯伟1,肖立民1,周世东11.清华大学电子工程系,北京100084;2.中国电子科技集团公司电子科学研究院,北京100041收稿日期:2015-09-21基金项目:国家“九七三”重点基础研究项目(2012CB316002);国家“八六三”高技术项目(2014AA01A703)作者简 ...
    本站小编 Free考研考试 2020-04-15
  • 感应同步器测角系统误差测试及补偿
    李海霞,张嵘,韩丰田清华大学精密仪器系,北京100084收稿日期:2015-05-22基金项目:国家自然青年科学基金项目(61203227)作者简介:李海霞(1977—),女,助研。E-mail:li-hx03@mails.tsinghua.edu.cn摘要:工程实用的高精度感应同步器测角系统因安装 ...
    本站小编 Free考研考试 2020-04-15
  • 基于重复滑模观测器的直线电机系统干扰估计
    李方,叶佩青,严乐阳,张辉清华大学机械工程系,摩擦学国家重点实验室,精密超精密制造装备与控制北京市重点实验室,北京100084收稿日期:2015-10-26基金项目:国家科技支撑项目(2015BAI03B00);北京市科技计划项目(Z1411qhdxxb(zrkxb)-56-6-626514015) ...
    本站小编 Free考研考试 2020-04-15
  • 卫星高速数传系统多码率融合LDPC编码器设计
    葛广君,殷柳国清华大学航天航空学院,清华信息科学与技术国家实验室(筹),北京100084收稿日期:2015-12-02基金项目:国家自然科学基金资助项目(61132002,91538203);清华大学自主科研计划(20121088030)作者简介:葛广君(1989-),男,博士研究生通讯作者:殷柳国 ...
    本站小编 Free考研考试 2020-04-15
  • 运用t检验评估3DES算法的侧信道信息泄露
    陈佳哲,李贺鑫,王亚楠,王宇航中国信息安全测评中心,北京100085收稿日期:2016-01-24基金项目:国家自然科学基金资助项目(61402536,61202493,61402252)作者简介:陈佳哲(1985-),男,助理研究员。E-mail:chenjz@secemail.cn摘要:t检验是 ...
    本站小编 Free考研考试 2020-04-15
  • 卫生干预分类的编码结构分析与信息建模
    王婷艳,于明,杨兰,宁温馨,孔德华清华大学工业工程系,卫生与医疗服务研究中心,北京100084收稿日期:2015-09-08作者简介:王婷艳(1990-),女,博士研究生。通讯作者:于明,副教授,E-mail:mingyu@tsinghua.edu.cn摘要:为了用信息技术支持卫生干预分类(Clas ...
    本站小编 Free考研考试 2020-04-15
  • 动态不确定因果图用于复杂系统故障诊断
    赵越1,董春玲2,张勤1,21.清华大学核能与新能源技术研究院,先进核能技术协同创新中心,先进反应堆工程与安全教育部重点实验室,北京100084;2.清华大学计算机科学与技术系,北京100084收稿日期:2015-09-17基金项目:国家自然科学基金资助项目(61273330,61402266)作者 ...
    本站小编 Free考研考试 2020-04-15
  • 向量距离中角度信息对时空Kriging的影响
    陈鼎新1,2,陆文凯1,刘代志21.清华大学自动化系,智能技术与系统国家重点实验室,北京100084;2.火箭军工程大学907教研室,西安710025收稿日期:2015-12-01基金项目:国家自然科学基金资助项目(41374154)作者简介:陈鼎新(1986-),男,博士研究生。通讯作者:陆文凯, ...
    本站小编 Free考研考试 2020-04-15
  • 自考毕业生,档案信息该怎么填写
    提问问题:档案学院:教育学部提问人:18***60时间:2019-09-2310:42提问内容:您好,请问自考毕业生,档案信息该怎么填写回复内容:如实填写就行 ...
    本站小编 天津师范大学 2019-11-27
  • 跪求老师解答,18年毕业的 专科学习的是电子信息工程技术,可以报考贵校的小学教育专硕专业吗?
    提问问题:跪求老师解答,18年毕业的专科学习的是电子信息工程技术,可以报考贵校的小学教育专硕专业吗?学院:教育学部提问人:15***09时间:2019-09-2309:06提问内容:跪求老师解答,18年毕业的专科学习的是电子信息工程技术,可以报考贵校的小学教育专硕专业吗?请问一下,同等学力有什么具体 ...
    本站小编 天津师范大学 2019-11-27