表面等离激元与表面非线性光学SURFACE PLASMON POLARITON AND SURFACE NONLINEAR OPTICS 刘韡韬;王洪庆; 1:复旦大学物理系 2:应用表面物理国家重点实验室 3:微纳光子结构教育部重点实验室 摘要(Abstract):
表面等离激元与表面非线性光学(如光学二次谐波、光学混频等)同为重要的表面光学现象,在现代科技中具有十分广泛的应用.近年以来,随着纳米科学与激光科学的发展,两者结合所带来的新现象、新应用引起了人们广泛的兴趣.本文对等离激元与表面非线性光学结合的工作进行了简介,并着重介绍了以相关技术探测电化学界面的新进展.
关键词(KeyWords): 表面等离激元;;表面非线性光学;;电化学界面
Abstract:
Keywords:
基金项目(Foundation):
作者(Author): 刘韡韬;王洪庆;
Email:
参考文献(References): [1] Shen Y R,Surface nonlinear optics[Invited][J].Journal of the optical society of america B-optical physics,2011,28(2):A56-A66.
[2] Chen C K,Heinz T F,Ricard D,et al.Detection of molecular monolayers by optical second-harmonic generation[J].Physical Review Letters,1981,46(15):1010-1012.
[3] Zhu X D,Suhr H,Shen Y R.Surface vibrational spectroscopy by infrared-visible sum frequency generation[J].Physical Review B,1987,35(8):3047-3050.
[4] Somorjai G A,Rupprechter G.Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation(SFG)Surface Vibrational Spectroscopy[J].J.phys.chem.B,1999,103:1623-1630.
[5] Messmer M C,Conboy J C,Richmond G L.Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation[J].J.Am.Chem.Soc,1995,117(30):8039-8040.
[6] Ward R N,Davies P B,Bain C D.Orientation of surfac-tants adsorbed on a hydrophobic surface[J].J.Phys.Chem,1993,97(28):7141-7143.
[7] Zhuang X,Miranda P B,Kim D,et al.Mapping molecular orientation and conformation at interfaces by surface nonlinear optics[J].Phys.Rev.B,1999,59(19):12632-12640.
[8] Su X,Cremer P S,Shen Y R,et al.Pressure Dependence(10(-10)-700Torr)of the Vibrational spectra of adsorbed CO on Pt(111)studied by sum frequency generation[J].Phys.Rev.Lett,1996,77(18):3858-3860.
[9] Superfine R,Huang J Y,Shen Y R.Nonlinear optical studies of the pure liquid/vapor interface:Vibrational spectra and polar ordering.[J].Physical Review Letters,1991,66(8):1066-1069.
[10] Du Q,Superfine R,Freysz E,et al.Vibrational spectroscopy of water at the vapor/water interface.[J].Physical Review Letters,1993,70(15):2313-2316.
[11] Du Q,Freysz E,Shen Y R.Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity.[J].Science,1994,264:826-828.
[12] Miranda P B,Shen Y R.Liquid Interfaces:A study by sum-frequency vibrational spectroscopy[J].Journal of Physical Chemistry B,1999,103(17):3292-3307.
[13] Ji N,Ostroverkhov V,Tian C S,et al.Characterization of vibrational resonances of water-vapor interfaces by phasesensitive sum-frequency spectroscopy.[J].Physical Review Letters,2008,100(9):1937-1940.
[14] Chen Z,Ward R,Tian Y,et al.Surface composition of biopolymer blends Biospan-SP/Phenoxy and Biospan-F/Phenoxy observed with SFG,XPS,and contact angle goniometry[J].Journal of Physical Chemistry B Materials Surfaces Interfaces Amp Biophysical,1999,103(15):2935-2942.
[15] Zhang D,Gracias D H,Ward R,et al.Surface studies of polymer blends by sum frequency vibrational spectroscopy,atomic force microscopy,and contact angle goniometry[J].J.Phys.Chem.B,1998,102(32):6225-6230.
[16] Zhang D,Shen Y R,Somorjai G A.Studies of surface structures and compositions of polyethylene and polypropylene by IR+visible sum frequency vibrational spectroscopy[J].Chemical Physics Letters,1997,281(4-6):394-400.
[17] Chen C,Liu W,Pagliusi P,et al.Sum-frequency vibrational spectroscopy Study of photoirradiated polymer surfaces[J].Macromolecules,2009,42(6):2122-2126.
[18] Chin R P,Huang J Y,Shen Y R,et al.Interaction of atomic hydrogen with the diamond C(111)surface studied by infrared-visible sum-frequency-generation spectroscopy.[J].Phys Rev B,1995,52(8):5985-5995.
[19] Su X,Cremer P S,Shen Y R,et al.High-pressure CO oxidation on Pt(111)monitored with infrared61Visible sum frequency generation(SFG)[J].Journal of the American Chemical Society,1997,119(17):3994-4000.
[20] Wei X,Miranda P B,Shen YR.Surface vibrational spectroscopic study of surface melting of ice.[J].Physical Review Letters,2001,86(8):1554-1557.
[21] Liu W T,Shen Y R.Surface vibrational modes of alphaquartz(0001)probed by sum-frequency spectroscopy.[J].Physical Review Letters,2008,101(1):4962-4964.
[22] Wang J,Buck S M,Even M A,et al.Molecular responses of proteins at different interfacial environments detected by sum frequency generation vibrational spectroscopy.[J].Journal of the American Chemical Society,2002,124(44):13302-13305.
[23] Liu J,Conboy J C.Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy.[J].Journal of the American Chemical Society,2004,126(27):8376-8377.
[24] Liu J,Conboy J C.Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy.[J].Journal of the American Chemical Society,2004,126(1):8894-8895.
[25] Nguyen K T,Soong R,Lm S C,et al.Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy.[J].Journal of the American Chemical Society,2010,132(43):15112-15115.
[26] Castro A,Sitzmann E V,Zhang D,et al.Rotational relaxation at the air/water interface by time-resolved second harmonic generation[J].J.Phys.Chem,1991,(18):6752-6753.
[27] Guyot-Sionnest P.Coherent processes at surfaces:Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111).[J].Physical Review Letters,1991,66(11):1489-1492.
[28] McGuire J A,Shen Y R.Ultrafast vibrational dynamics at water interfaces.[J].Science,2006,313(5795):1945-1948.
[29] Smits M,Ghosh A,Sterrer M,et al.Ultrafast vibrational energy transfer between surface and bulk water at the airwater interface.[J].Phys.Rev.Lett,2007,98(9).
[30] Shen Y R.Proceedings of the international school of physics,enrico fermi[Z].Amsterdam:North-Holland,1994.
[31] Shen Y R.The principles of nonlinear optics[Z].New York:Wiley-lnterscience,1984.
[32] Shen Y R,Ostroverkhov V.Sum-frequency vibrational spectroscopy on water interfaces:polar orientation of water molecules at interfaces.[J].Chemical Reviews,2006,106(25):1140-1154.
[33] Wei X,Zhuang X,Hong S C,et al.Sum-frequency vibrational spectroscopic study of a rubbed polymer surface[J].Physical Review Letters,1999,82(21):4256-4259.
[34] Sommerfeld A.The broadening of the waves and the wireless telegraph[J].Annalen Der Physik,1909,28:665-736.
[35] Kretschm E.The determination of the optical constants of metals by excitation of surface plasmons[J].Zeitschrift Fur Physik 1971,241:313.
[36] Otto A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].Ieitschrift Für Physik A Hadrons &Nuclei,1968,216(4):398-410.
[37] Billmann J,Otto A.Experimental evidence for a local mechanism of surface enhanced Raman scattering[J].Applications of Surface Science,1980,6(80):356-361.
[38] Fleischmann M,Hendra P J,McQuilla A J,Raman-Spectra of pyridine adsorbed at a silver electrode[J].Chemical Physics Letters 1974,26(2):163-166.
[39] Nie S M,Emery S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science,1997,275(5303):1102-1106.
[40] Zhang J,Fu Y,Chowdhury M H,et al.Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:Coupling effect between metal particles[J].Nano Letters,2007,7(7):2101-2107.
[41] Brockman J M,Nelson B P,Corn R M.Surface plasmon resonance imaging measurements of ultrathin organic films[J].Annual Review of Physical Chemistry,2000,51:41-63.
[42] Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].Springer-Verlag,1986.
[43] Kauranen M,Zayats A V.Nonlinear plasmonics[J].Nature Photonics,2012,6:737-748.
[44] Chen C K,DeCastro A,Shen Y R,et al.Surface coherent anti-stokes Raman spectroscopy[J].Physical Review Letters,1979,43(13):946-949.
[45] Lamprecht B,Krenn J R,Leitner A,et al.Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation[J].Physical Review Letters,1999,83(21):4421-4424.
[46] Lippitz M,van Dijk MA,Orrit M.Third-harmonic generation from single gold nanoparticles.[J].Nano Letters,2005,5(4):799-802.
[47] Palomba S,Novotny L.Nonlinear excitation of surface plasmon polaritons by four-wave mixing.[J].Physical Review Letters,2008,101(5):1603-1606.
[48] Renger J,Quidant R,Hulst N V,et al.Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing[J].Physical Review Letters,2009,103(26):2725-2727.
[49] Harutyunyan H,Palomba S,Renger J,et al.Nonlinear dark-field microscopy[J].Nano Letters,2010,10(12):5076-5079.
[50] Genevet P,Tetienne J P,Gatzogiannis E,et al.Large en-hancement of nonlinear optical phenomena by plasmonic nanocavity gratings[J].Nano Letters,2010,10(12):4880-4883.
[51] Liao H B,Xiao R F,Fu J S,et al.Origin of third-order optical nonlinearity in Au:SiO(2)composite films on femtosecond and picosecond time scales.[J].Optics Letters,1998,23(5):388-390.
[52] Renger J,Quidant R,Hulst N V,et al.Surface-enhanced nonlinear four-wave mixing.[J].Physical Review Letters,2010,104(4):19-63.
[53] Flytzanis C,Hache F,Klein M.C,et al.Nonlinear optics in composite materials.I:Semiconductor and metal crystallites in dielectrics[J].Progress in Optics,1991,29:321-411.
[54] Danckwerts M,Novotny L.Optical frequency mixing at coupled gold nanoparticles.[J].Physical Review Letters,2007,98(2).
[55] Nathaniel K.Grady,Mark W.Knight,Rizia Bardhan,et al.Optically-driven collapse of a plasmonic nanogap selfmonitored by optical frequency mixing[J].Nano Lett,2010,10(4):1522-1528.
[56] Wang Y,Lin C Y,Nikolaenko A.Four-wave mixing microscopy of nanostructures[J].Advances in Optics &Photonics,2011,3(1):1-52.
[57] Chen C K,Decastro A R B,Shen Y R.Surface-Enhanced Second-Harmonic Generation[J].Physical Review Letters,1981(46):145-148.
[58] Antoine R,Pellarin M,Palpant B,et al.Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix[J].Journal of Applied Physics,1998,84(8):4532-4536.
[59] Schn P,Bonod N,Devaux E,et al.Enhanced secondharmonic generation from individual metallic nanoapertures.[J].Optics Letters,2010,35(23):4063-4065.
[60] Nieuwstadt J A V,Sandtke M,Harmsen R H,et al.Strong modification of the nonlinear optical response of metallic subwavelength hole arrays[J].Physical Review Letters,2006,97(14).
[61] Chen K,Durak C,Heflin J R,et al.Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films.[J].Nano Letters,2007,7(2):254-258.
[62] Fan W,Zhang S,Panoiu N C,et al.Second harmonic generation from a nanopatterned isotropic nonlinear material[J].Nano Letters,2006,6(5):1027-1030.
[63] Cai W,Vasudev A P,Brongersma M L.Electrically controlled nonlinear generation of light with plasmonics.[J].Science,2011,333(6050):1720-.
[64] Ishifuji M,Mitsuishi M,Miyashita T.Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.[J].J.Am.Chem.Soc,2009,131(12):4418-24.
[65] Sanatinia R,Swillo M,Anand S.Surface second-harmonicgeneration from vertical gap nanopillars[J].Nano Letters,2012,12(2):820-826.
[66] Valev V K.Characterization of nanostructured plasmonic surfaces with second harmonic generation[J].Langmuir,2012,28(44):15454-15471.
[67] Klein MW,Enkrich C,Wegener M,et al.Second-harmonic generation from magnetic metamaterials.[J].Science,2006,313:502-504.
[68] Linden S,Niesler F B P,Forstner J,et al.Collective effects in second-harmonic generation from split-ring-resonator arrays[J].Physical Review Letters,2012,109.
[69] Baldelli S,Eppler A S,Anderson E,et al.Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays[J].Journal of Chemical Physics,2000,113(13):5432-5438.
[70] Humbert C,Busson B,Abid J P,et al.Self-assembled organic monolayers on gold nanoparticles:A study by sumfrequency generation combined with UV-vis spectroscopy[J].Electrochimica Acta,2005,50(15):3101-3110.
[71] Li Q,Kuo C W,Yang Z,et al.Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy.[J].Physical Chemistry Chemical Physics,2009,11(18):3436-42.
[72] Tourillon G,Laurent Dreesen,Volcke C,et al.Closepacked array of gold nanoparticles and sum frequency generation spectroscopy in total internal reflection:aplatform for studying biomolecules and biosensors[J].Journal of Materials Science,2009,44(24):6805-6810.
[73] Lis D,Caudano Y,Henry M,et al,Selective plasmonic platforms based on nanopillars to enhance vibrational sumfrequency generation spectroscopy.Advanced Optical Materials,2013,1(3):244-255.
[74] Duan J,Park K,Maccuspie R I,et al.Optical properties of rodlike metallic nanostructures:Insight from theory and experiment[J].J.Phys.Chem.C,2009,113(35):15524-15532.
[75] Chen Z,Zhang Z.Enhanced surface sum frequency generation from LB layer covered silver film[J].Journal of Applied Physics,1991,69(11):7406-7410.
[76] Ham E W M,Vrehen Q H E,Eliel E R,et al.Giant enhancement of sum-frequency yield by surface-plasmon excitation[J].Journal of the Optical Society of America B-Optical Physics,1999,16(7):1146-1152.
[77] Liu W T,Shen Y R,In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance[J].Proceedings of the National Academy of Sciences,2014,111(4):1293-1297.
[78] Liu W,Zhang L,Shen Y R.Interfacial layer structure at alcohol/silica interfaces probed by sum-frequency vibrational spectroscopy[J].Chemical Physics Letters,2005,412(1-3):206-209.
[79] Abanulo J C,Harris R D,Sheridan A K,et al.Waveguide surface plasmon resonance studies of surface reactions on gold electrodes[J].Faraday Discussions,2002,121(1):139-152.
[80] Petrovic',M.Metiko-Hukovic',R.Babic',J.Katic',et al.A multi-technique study of gold oxidation and semiconducting properties of the compactα-oxide layer[J].Journal of Electroanalytical Chemistry 2009,629(1-2):43-49.
[81] Burke L D,Nugent P F.The electrochemistry of gold:II the electrocatalytic behaviour of the metal in aqueous media[J].Gold Bulletin,1998,31(2):39-50.
[82] Love J C,Estroff L A,Kriebel J K,et al.Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J].Chemical Reviews,2005,36(32):1103-1169.
[83] Pesika N S,Stebe K J,Searson P C.Kinetics of desorption of alkanethiolates on gold[J].Langmuir,2006,22(8):3474-3476.
[84] Quinn B M,Kontturi K.Reductive desorption of thiolate from monolayer protected gold clusters.[J].J.Am.Chem.Soc,2004,126(23):7168-7169.
[85] Ron H,Rubinstein I.Self-assembled monolayers on oxidized metals.3.alkylthiol and dialkyl disulfide assembly on gold under electrochemical conditions[J].Journal of the American Chemical Society,1998(120):13444-13452.
[86] Widrig C A,Chung C,Porter M D.The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes[J].Journal of Electro analytical Chemistry,1991(310):335-359.
[87] Yang D F,Wilde C P,Morin M.Studies of the electrochemical removal and efficient reformation of a monolayer of hexadecanethiol self-assembled at an Au(111)single crystal in aqueous solutions[J].Langmuir,1997,13(2):243-249.
摘要:
扩展功能
本文信息
PDF全文请访问中国知网下载(479K)
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
表面等离激元与表面非线性光学
清华大学 辅仁网/2017-07-08
相关话题/光学 科学 技术 纳米 结构
基于科学实验室系统的受迫振动特性研究
基于科学实验室系统的受迫振动特性研究RESEARCH ON CHARACTERISTIC OF FORCED OSCILLATION BASED ON PASCO SYSTEM 邢起;曲连晔;倪晨;方恺;何雨华;郭先红; 1:同济大学物理科学与工程学院 摘要(Abs ...清华大学论文文献 清华大学 辅仁网 2017-07-08关于一道光学习题的分析与思考
关于一道光学习题的分析与思考SOME ANALYSIS AND CONSIDERATIONS ON AN OPTICAL EXERCISE 王瑶; 1:郑州大学物理工程学院 摘要(Abstract): 特殊形状的棱镜在控制光路传播方面有重要的应用价值.本文首先为一 ...清华大学论文文献 清华大学 辅仁网 2017-07-08复旦大学光学技术的一些历史与进展
复旦大学光学技术的一些历史与进展 赵海斌;王松有; 摘要(Abstract): 复旦大学光学学科历经60余年的发展,自20世纪50年代研制成功我国第一台医用X光管,到如今各类先进光谱仪器和国防应用特种设备的开发,在激光与光谱技术的应用领域取得了许多重要的成果。近 ...清华大学论文文献 清华大学 辅仁网 2017-07-08光学千年(三)——国际光年概观光学千年发展
光学千年(三)——国际光年概观光学千年发展OPTICS IN THE LAST MILLENNIUM 李师群; 1:清华大学物理系 摘要(Abstract): 2013年12月20日联合国第六十八届会议决定将2015年设定为光和光基技术国际年,简称2015国际光年 ...清华大学论文文献 清华大学 辅仁网 2017-07-08激光与光谱技术的应用:复旦大学光学技术的一些历史与进展
激光与光谱技术的应用:复旦大学光学技术的一些历史与进展APPLICATION OF LASER AND SPECTROSCOPIC TECHNOLOGY:HISTORY AND ADVANCEMENTS OF THE OPTICAL TECHNOLOGY AT FUDAN UNIVERSITY 陈良 ...清华大学论文文献 清华大学 辅仁网 2017-07-08光学干涉在二次电光系数测量中的应用与分析
光学干涉在二次电光系数测量中的应用与分析APPLICATION AND ANALYSIS OF THE OPTICAL INTERFERENCE IN THE QUADRATIC ELECTRO-OPTIC COEFFICIENT MEASUREMENT 田浩;周忠祥;王晓鸥;宫德维;霍雷;张宇; ...清华大学论文文献 清华大学 辅仁网 2017-07-08光学千年(二)——国际光年概观光学千年发展
光学千年(二)——国际光年概观光学千年发展OPTICS IN THE LAST MILLENNIUM 李师群; 1:清华大学物理系 摘要(Abstract): 2013年12月20日联合国第六十八届会议决定将2015年设定为光和光基技术国际年,简称2015国际光年 ...清华大学论文文献 清华大学 辅仁网 2017-07-08从光学显微镜到光学“显纳镜”
从光学显微镜到光学“显纳镜”FROM OPTICAL MICROSCOPE TO OPTICAL NANOSCOPE 李焱;龚旗煌; 1:北京大学物理学院 摘要(Abstract): 光学显微镜在生物学和医学等众多科学技术以及生产领域发挥着重要作用,分辨能力已经进 ...清华大学论文文献 清华大学 辅仁网 2017-07-08地方高校工程应用型光电信息科学与工程专业人才培养的探索与实践
地方高校工程应用型光电信息科学与工程专业人才培养的探索与实践EXPLORATION AND PRACTICE IN PROFESSIONAL TRAINING OF LOCAL UNIVERSITY FOR THE MAJOR OF OPTOELECTRONIC INFORMATION SCIENC ...清华大学论文文献 清华大学 辅仁网 2017-07-08超稳球形光学腔的设计
超稳球形光学腔的设计DESIGN OF THE ULTRA STABILE SPHERICAL OPTICAL CAVITY 廖洪清;陈豪;刘贵文;曹云玖; 1:上海工程技术大学基础教学学院 摘要(Abstract): 环境振动会引起光学谐振腔体的形变,从而降低了 ...清华大学论文文献 清华大学 辅仁网 2017-07-08