删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

表面等离激元与表面非线性光学

清华大学 辅仁网/2017-07-08

表面等离激元与表面非线性光学
SURFACE PLASMON POLARITON AND SURFACE NONLINEAR OPTICS 刘韡韬;王洪庆; 1:复旦大学物理系 2:应用表面物理国家重点实验室 3:微纳光子结构教育部重点实验室 摘要(Abstract):

表面等离激元与表面非线性光学(如光学二次谐波、光学混频等)同为重要的表面光学现象,在现代科技中具有十分广泛的应用.近年以来,随着纳米科学与激光科学的发展,两者结合所带来的新现象、新应用引起了人们广泛的兴趣.本文对等离激元与表面非线性光学结合的工作进行了简介,并着重介绍了以相关技术探测电化学界面的新进展.

关键词(KeyWords): 表面等离激元;;表面非线性光学;;电化学界面

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 刘韡韬;王洪庆;

Email:


参考文献(References): [1] Shen Y R,Surface nonlinear optics[Invited][J].Journal of the optical society of america B-optical physics,2011,28(2):A56-A66.
[2] Chen C K,Heinz T F,Ricard D,et al.Detection of molecular monolayers by optical second-harmonic generation[J].Physical Review Letters,1981,46(15):1010-1012.
[3] Zhu X D,Suhr H,Shen Y R.Surface vibrational spectroscopy by infrared-visible sum frequency generation[J].Physical Review B,1987,35(8):3047-3050.
[4] Somorjai G A,Rupprechter G.Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation(SFG)Surface Vibrational Spectroscopy[J].J.phys.chem.B,1999,103:1623-1630.
[5] Messmer M C,Conboy J C,Richmond G L.Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation[J].J.Am.Chem.Soc,1995,117(30):8039-8040.
[6] Ward R N,Davies P B,Bain C D.Orientation of surfac-tants adsorbed on a hydrophobic surface[J].J.Phys.Chem,1993,97(28):7141-7143.
[7] Zhuang X,Miranda P B,Kim D,et al.Mapping molecular orientation and conformation at interfaces by surface nonlinear optics[J].Phys.Rev.B,1999,59(19):12632-12640.
[8] Su X,Cremer P S,Shen Y R,et al.Pressure Dependence(10(-10)-700Torr)of the Vibrational spectra of adsorbed CO on Pt(111)studied by sum frequency generation[J].Phys.Rev.Lett,1996,77(18):3858-3860.
[9] Superfine R,Huang J Y,Shen Y R.Nonlinear optical studies of the pure liquid/vapor interface:Vibrational spectra and polar ordering.[J].Physical Review Letters,1991,66(8):1066-1069.
[10] Du Q,Superfine R,Freysz E,et al.Vibrational spectroscopy of water at the vapor/water interface.[J].Physical Review Letters,1993,70(15):2313-2316.
[11] Du Q,Freysz E,Shen Y R.Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity.[J].Science,1994,264:826-828.
[12] Miranda P B,Shen Y R.Liquid Interfaces:A study by sum-frequency vibrational spectroscopy[J].Journal of Physical Chemistry B,1999,103(17):3292-3307.
[13] Ji N,Ostroverkhov V,Tian C S,et al.Characterization of vibrational resonances of water-vapor interfaces by phasesensitive sum-frequency spectroscopy.[J].Physical Review Letters,2008,100(9):1937-1940.
[14] Chen Z,Ward R,Tian Y,et al.Surface composition of biopolymer blends Biospan-SP/Phenoxy and Biospan-F/Phenoxy observed with SFG,XPS,and contact angle goniometry[J].Journal of Physical Chemistry B Materials Surfaces Interfaces Amp Biophysical,1999,103(15):2935-2942.
[15] Zhang D,Gracias D H,Ward R,et al.Surface studies of polymer blends by sum frequency vibrational spectroscopy,atomic force microscopy,and contact angle goniometry[J].J.Phys.Chem.B,1998,102(32):6225-6230.
[16] Zhang D,Shen Y R,Somorjai G A.Studies of surface structures and compositions of polyethylene and polypropylene by IR+visible sum frequency vibrational spectroscopy[J].Chemical Physics Letters,1997,281(4-6):394-400.
[17] Chen C,Liu W,Pagliusi P,et al.Sum-frequency vibrational spectroscopy Study of photoirradiated polymer surfaces[J].Macromolecules,2009,42(6):2122-2126.
[18] Chin R P,Huang J Y,Shen Y R,et al.Interaction of atomic hydrogen with the diamond C(111)surface studied by infrared-visible sum-frequency-generation spectroscopy.[J].Phys Rev B,1995,52(8):5985-5995.
[19] Su X,Cremer P S,Shen Y R,et al.High-pressure CO oxidation on Pt(111)monitored with infrared61Visible sum frequency generation(SFG)[J].Journal of the American Chemical Society,1997,119(17):3994-4000.
[20] Wei X,Miranda P B,Shen YR.Surface vibrational spectroscopic study of surface melting of ice.[J].Physical Review Letters,2001,86(8):1554-1557.
[21] Liu W T,Shen Y R.Surface vibrational modes of alphaquartz(0001)probed by sum-frequency spectroscopy.[J].Physical Review Letters,2008,101(1):4962-4964.
[22] Wang J,Buck S M,Even M A,et al.Molecular responses of proteins at different interfacial environments detected by sum frequency generation vibrational spectroscopy.[J].Journal of the American Chemical Society,2002,124(44):13302-13305.
[23] Liu J,Conboy J C.Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy.[J].Journal of the American Chemical Society,2004,126(27):8376-8377.
[24] Liu J,Conboy J C.Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy.[J].Journal of the American Chemical Society,2004,126(1):8894-8895.
[25] Nguyen K T,Soong R,Lm S C,et al.Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy.[J].Journal of the American Chemical Society,2010,132(43):15112-15115.
[26] Castro A,Sitzmann E V,Zhang D,et al.Rotational relaxation at the air/water interface by time-resolved second harmonic generation[J].J.Phys.Chem,1991,(18):6752-6753.
[27] Guyot-Sionnest P.Coherent processes at surfaces:Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111).[J].Physical Review Letters,1991,66(11):1489-1492.
[28] McGuire J A,Shen Y R.Ultrafast vibrational dynamics at water interfaces.[J].Science,2006,313(5795):1945-1948.
[29] Smits M,Ghosh A,Sterrer M,et al.Ultrafast vibrational energy transfer between surface and bulk water at the airwater interface.[J].Phys.Rev.Lett,2007,98(9).
[30] Shen Y R.Proceedings of the international school of physics,enrico fermi[Z].Amsterdam:North-Holland,1994.
[31] Shen Y R.The principles of nonlinear optics[Z].New York:Wiley-lnterscience,1984.
[32] Shen Y R,Ostroverkhov V.Sum-frequency vibrational spectroscopy on water interfaces:polar orientation of water molecules at interfaces.[J].Chemical Reviews,2006,106(25):1140-1154.
[33] Wei X,Zhuang X,Hong S C,et al.Sum-frequency vibrational spectroscopic study of a rubbed polymer surface[J].Physical Review Letters,1999,82(21):4256-4259.
[34] Sommerfeld A.The broadening of the waves and the wireless telegraph[J].Annalen Der Physik,1909,28:665-736.
[35] Kretschm E.The determination of the optical constants of metals by excitation of surface plasmons[J].Zeitschrift Fur Physik 1971,241:313.
[36] Otto A.Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].Ieitschrift Für Physik A Hadrons &Nuclei,1968,216(4):398-410.
[37] Billmann J,Otto A.Experimental evidence for a local mechanism of surface enhanced Raman scattering[J].Applications of Surface Science,1980,6(80):356-361.
[38] Fleischmann M,Hendra P J,McQuilla A J,Raman-Spectra of pyridine adsorbed at a silver electrode[J].Chemical Physics Letters 1974,26(2):163-166.
[39] Nie S M,Emery S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J].Science,1997,275(5303):1102-1106.
[40] Zhang J,Fu Y,Chowdhury M H,et al.Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:Coupling effect between metal particles[J].Nano Letters,2007,7(7):2101-2107.
[41] Brockman J M,Nelson B P,Corn R M.Surface plasmon resonance imaging measurements of ultrathin organic films[J].Annual Review of Physical Chemistry,2000,51:41-63.
[42] Raether H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M].Springer-Verlag,1986.
[43] Kauranen M,Zayats A V.Nonlinear plasmonics[J].Nature Photonics,2012,6:737-748.
[44] Chen C K,DeCastro A,Shen Y R,et al.Surface coherent anti-stokes Raman spectroscopy[J].Physical Review Letters,1979,43(13):946-949.
[45] Lamprecht B,Krenn J R,Leitner A,et al.Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation[J].Physical Review Letters,1999,83(21):4421-4424.
[46] Lippitz M,van Dijk MA,Orrit M.Third-harmonic generation from single gold nanoparticles.[J].Nano Letters,2005,5(4):799-802.
[47] Palomba S,Novotny L.Nonlinear excitation of surface plasmon polaritons by four-wave mixing.[J].Physical Review Letters,2008,101(5):1603-1606.
[48] Renger J,Quidant R,Hulst N V,et al.Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing[J].Physical Review Letters,2009,103(26):2725-2727.
[49] Harutyunyan H,Palomba S,Renger J,et al.Nonlinear dark-field microscopy[J].Nano Letters,2010,10(12):5076-5079.
[50] Genevet P,Tetienne J P,Gatzogiannis E,et al.Large en-hancement of nonlinear optical phenomena by plasmonic nanocavity gratings[J].Nano Letters,2010,10(12):4880-4883.
[51] Liao H B,Xiao R F,Fu J S,et al.Origin of third-order optical nonlinearity in Au:SiO(2)composite films on femtosecond and picosecond time scales.[J].Optics Letters,1998,23(5):388-390.
[52] Renger J,Quidant R,Hulst N V,et al.Surface-enhanced nonlinear four-wave mixing.[J].Physical Review Letters,2010,104(4):19-63.
[53] Flytzanis C,Hache F,Klein M.C,et al.Nonlinear optics in composite materials.I:Semiconductor and metal crystallites in dielectrics[J].Progress in Optics,1991,29:321-411.
[54] Danckwerts M,Novotny L.Optical frequency mixing at coupled gold nanoparticles.[J].Physical Review Letters,2007,98(2).
[55] Nathaniel K.Grady,Mark W.Knight,Rizia Bardhan,et al.Optically-driven collapse of a plasmonic nanogap selfmonitored by optical frequency mixing[J].Nano Lett,2010,10(4):1522-1528.
[56] Wang Y,Lin C Y,Nikolaenko A.Four-wave mixing microscopy of nanostructures[J].Advances in Optics &Photonics,2011,3(1):1-52.
[57] Chen C K,Decastro A R B,Shen Y R.Surface-Enhanced Second-Harmonic Generation[J].Physical Review Letters,1981(46):145-148.
[58] Antoine R,Pellarin M,Palpant B,et al.Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix[J].Journal of Applied Physics,1998,84(8):4532-4536.
[59] Schn P,Bonod N,Devaux E,et al.Enhanced secondharmonic generation from individual metallic nanoapertures.[J].Optics Letters,2010,35(23):4063-4065.
[60] Nieuwstadt J A V,Sandtke M,Harmsen R H,et al.Strong modification of the nonlinear optical response of metallic subwavelength hole arrays[J].Physical Review Letters,2006,97(14).
[61] Chen K,Durak C,Heflin J R,et al.Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films.[J].Nano Letters,2007,7(2):254-258.
[62] Fan W,Zhang S,Panoiu N C,et al.Second harmonic generation from a nanopatterned isotropic nonlinear material[J].Nano Letters,2006,6(5):1027-1030.
[63] Cai W,Vasudev A P,Brongersma M L.Electrically controlled nonlinear generation of light with plasmonics.[J].Science,2011,333(6050):1720-.
[64] Ishifuji M,Mitsuishi M,Miyashita T.Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.[J].J.Am.Chem.Soc,2009,131(12):4418-24.
[65] Sanatinia R,Swillo M,Anand S.Surface second-harmonicgeneration from vertical gap nanopillars[J].Nano Letters,2012,12(2):820-826.
[66] Valev V K.Characterization of nanostructured plasmonic surfaces with second harmonic generation[J].Langmuir,2012,28(44):15454-15471.
[67] Klein MW,Enkrich C,Wegener M,et al.Second-harmonic generation from magnetic metamaterials.[J].Science,2006,313:502-504.
[68] Linden S,Niesler F B P,Forstner J,et al.Collective effects in second-harmonic generation from split-ring-resonator arrays[J].Physical Review Letters,2012,109.
[69] Baldelli S,Eppler A S,Anderson E,et al.Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays[J].Journal of Chemical Physics,2000,113(13):5432-5438.
[70] Humbert C,Busson B,Abid J P,et al.Self-assembled organic monolayers on gold nanoparticles:A study by sumfrequency generation combined with UV-vis spectroscopy[J].Electrochimica Acta,2005,50(15):3101-3110.
[71] Li Q,Kuo C W,Yang Z,et al.Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy.[J].Physical Chemistry Chemical Physics,2009,11(18):3436-42.
[72] Tourillon G,Laurent Dreesen,Volcke C,et al.Closepacked array of gold nanoparticles and sum frequency generation spectroscopy in total internal reflection:aplatform for studying biomolecules and biosensors[J].Journal of Materials Science,2009,44(24):6805-6810.
[73] Lis D,Caudano Y,Henry M,et al,Selective plasmonic platforms based on nanopillars to enhance vibrational sumfrequency generation spectroscopy.Advanced Optical Materials,2013,1(3):244-255.
[74] Duan J,Park K,Maccuspie R I,et al.Optical properties of rodlike metallic nanostructures:Insight from theory and experiment[J].J.Phys.Chem.C,2009,113(35):15524-15532.
[75] Chen Z,Zhang Z.Enhanced surface sum frequency generation from LB layer covered silver film[J].Journal of Applied Physics,1991,69(11):7406-7410.
[76] Ham E W M,Vrehen Q H E,Eliel E R,et al.Giant enhancement of sum-frequency yield by surface-plasmon excitation[J].Journal of the Optical Society of America B-Optical Physics,1999,16(7):1146-1152.
[77] Liu W T,Shen Y R,In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance[J].Proceedings of the National Academy of Sciences,2014,111(4):1293-1297.
[78] Liu W,Zhang L,Shen Y R.Interfacial layer structure at alcohol/silica interfaces probed by sum-frequency vibrational spectroscopy[J].Chemical Physics Letters,2005,412(1-3):206-209.
[79] Abanulo J C,Harris R D,Sheridan A K,et al.Waveguide surface plasmon resonance studies of surface reactions on gold electrodes[J].Faraday Discussions,2002,121(1):139-152.
[80] Petrovic',M.Metiko-Hukovic',R.Babic',J.Katic',et al.A multi-technique study of gold oxidation and semiconducting properties of the compactα-oxide layer[J].Journal of Electroanalytical Chemistry 2009,629(1-2):43-49.
[81] Burke L D,Nugent P F.The electrochemistry of gold:II the electrocatalytic behaviour of the metal in aqueous media[J].Gold Bulletin,1998,31(2):39-50.
[82] Love J C,Estroff L A,Kriebel J K,et al.Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J].Chemical Reviews,2005,36(32):1103-1169.
[83] Pesika N S,Stebe K J,Searson P C.Kinetics of desorption of alkanethiolates on gold[J].Langmuir,2006,22(8):3474-3476.
[84] Quinn B M,Kontturi K.Reductive desorption of thiolate from monolayer protected gold clusters.[J].J.Am.Chem.Soc,2004,126(23):7168-7169.
[85] Ron H,Rubinstein I.Self-assembled monolayers on oxidized metals.3.alkylthiol and dialkyl disulfide assembly on gold under electrochemical conditions[J].Journal of the American Chemical Society,1998(120):13444-13452.
[86] Widrig C A,Chung C,Porter M D.The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes[J].Journal of Electro analytical Chemistry,1991(310):335-359.
[87] Yang D F,Wilde C P,Morin M.Studies of the electrochemical removal and efficient reformation of a monolayer of hexadecanethiol self-assembled at an Au(111)single crystal in aqueous solutions[J].Langmuir,1997,13(2):243-249.


摘要:
扩展功能
本文信息
PDF全文请访问中国知网下载(479K)
相关话题/光学 科学 技术 纳米 结构