质子交换膜燃料电池氢气渗透电流及电子电阻检测方法 |
徐华池, 裴普成, 吴子尧 |
清华大学 汽车安全与节能国家重点实验室, 北京 100084 |
Hydrogen crossover current and electronic resistance detection in a PEM fuel cell |
XU Huachi, PEI Pucheng, WU Ziyao |
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要该文根据燃料电池在线性电位扫描下的响应特征, 建立了等效电路模型, 以区分电池内部的电化学过程, 包括氢脱附、双电层电容充电、电子内部短路以及氢气渗透。基于该模型, 改善了线性电位扫描的分析方法, 消除了扫描速率对结果的影响, 并解析得到了氢气渗透电流和电子电阻。根据模型假设, 详细阐述了恒电流扫描测量氢气渗透电流和电子电阻的分析方法。在一个34 cm2的单体电池上应用两种方法进行测量对比, 结果表明: 线性电位扫描得到的氢气渗透电流为1.19 mA·cm-2, 电子电阻为479 Ω·cm2; 恒电流方法得到的氢气渗透电流为1.25 mA·cm-2, 电子电阻为413 Ω·cm2。该模型可用于分析燃料电池各种电化学测量过程, 线性电位扫描方法和恒电流方法为燃料电池不同场合的测量和分析提供了参考。 | |||
关键词 :质子交换膜燃料电池,氢气渗透电流,电子电阻,线性电位扫描,恒电流方法 | |||
Abstract:The response characteristics of linear sweep voltammetry (LSV) were used to develop an equivalent circuit model of a proton exchange membrane (PEM) fuel cell to distinguish the various electrochemical processes, including hydrogen desorption on the platinum, charging of the double-layer capacitance, electron internal short circuits and hydrogen crossover. This model eliminated the effect of the scan rate on the LSV results so that the hydrogen crossover current and membrane electronic resistance could be measured. A galvanostatic method was also used to measure the hydrogen crossover current and the electronic resistance. Measurements on a single cell with an active area of 34 cm2 with the LSV method show that the hydrogen crossover current is 1.19 mA·cm-2 and the electronic resistance is 479 Ω·cm2 while the galvanostatic measurements give the hydrogen crossover current of 1.25 mA·cm-2 and the electronic resistance of 413 Ω·cm2. This model can be used to analyze various electrochemical measurements in PEM fuel cells with the two methods giving complementary measurements for various PEM fuel cell processes. | |||
Key words:proton exchange membrane (PEM) fuel cellhydrogen crossover currentelectronic resistancelinear sweep voltammetry (LSV)galvanostatic method | |||
收稿日期: 2015-07-31 出版日期: 2016-07-01 | |||
| |||
通讯作者:裴普成, 教授, E-mail: pchpei@tsinghua.edu.cnE-mail: pchpei@tsinghua.edu.cn |
引用本文: |
徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 587-591. XU Huachi, PEI Pucheng, WU Ziyao. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 587-591. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.016或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/587 |
图表:
图1 不同扫描速率下的线性电位扫描曲线 |
图2 燃料电池在充电过程中发生的4种 电化学过程示意图 |
图3 燃料电池在充电过程中的等效电路模型 |
图4 恒流充电过程中燃料电池的电压曲线 |
图5 不同电压区间[Vs,VT]的内部电流密度中值和电压中值 |
图6 氢气渗透电流密度和电子电阻的解析结果 |
参考文献:
[1] Cipriani G, Di Dio V, Genduso F, et al. Perspective on hydrogen energy carrier and its automotive applications [J]. International Journal of Hydrogen Energy, 2014, 39(16): 8482-8494. [2] 陈会翠, 裴普成. 质子交换膜(PEM)燃料电池变载过程动态模型 [J]. 清华大学学报: 自然科学版, 2014, 54(10): 1298-1303. CHEN Huicui, PEI Pucheng. Dynamic model of a proton exchange membrane (PEM) fuel cell during load changes [J]. Journal of Tsinghua University: Science and Technology, 2014, 54(10): 1298-1303. (in Chinese) [3] 侯明, 俞红梅, 衣宝廉. 车用燃料电池技术的现状与研究热点 [J]. 化学进展, 2009, 21(11): 2319-2332. HOU Ming, YU Hongmei, YI Baolian. Current status and perspective of vehicular fuel cell technologies [J]. Progress in Chemistry, 2009, 21(11): 2319-2332. (in Chinese) [4] 衣宝廉, 侯明. 车用燃料电池耐久性的解决策略 [J]. 汽车安全与节能学报, 2011, 2(2): 91-100.YI Baolian, HOU Ming. Solutions for the durability of fuel cells in vehicle applications [J]. Journal of Automotive Safety and Energy, 2011, 2(2): 91-100. (in Chinese) [5] Francia C, Ijeri V S, Specchia S, et al. Estimation of hydrogen crossover through Nafion® membranes in PEMFCs [J]. Journal of Power Sources, 2011, 196(4): 1833-1839. [6] Nam J, Chippar P, Kim W, et al. Numerical analysis of gas crossover effects in polymer electrolyte fuel cells (PEFCs) [J]. Applied Energy, 2010, 87(12): 3699-3709. [7] Bodner M, Hochenauer C, Hacker V. Effect of pinhole location on degradation in polymer electrolyte fuel cells [J]. Journal of Power Sources, 2015, 295: 336-348. [8] Baik K D, Hong B K, Kim M S. Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells [J]. Renewable Energy, 2013, 57: 234-239. [9] Kocha S S, Deliang Y J, Yi J S. Characterization of gas crossover and its implications in PEM fuel cells [J]. AIChE Journal, 2006, 52(5): 1916-1925. [10] Vilekar S A, Datta R. The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells [J]. Journal of Power Sources, 2010, 195(8): 2241-2247. [11] Endoh E, Terazono S, Widjaja H, et al. Degradation study of MEA for PEMFCs under low humidity conditions [J]. Electrochemical and Solid-State Letters, 2004, 7(7): A209-A211. [12] Bi W, Gray G E, Fuller T F. PEM fuel cell Pt/C dissolution and deposition in Nafion electrolyte [J]. Electrochemical and Solid-State Letters, 2007, 10(5): B101-B104. [13] Inaba M, Kinumoto T, Kiriake M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells [J]. Electrochimica Acta, 2006, 51(26): 5746-5753. [14] Wu J, Yuan X, Martin J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies [J]. Journal of Power Sources, 2008, 184(1): 104-119. [15] Baik K D, Kong I M, Hong B K, et al. Local measurements of hydrogen crossover rate in polymer electrolyte membrane fuel cells [J]. Applied Energy, 2013, 101: 560-566. [16] Baik K D, Kim S I, Hong B K, et al. Effects of gas diffusion layer structure on the open circuit voltage and hydrogen crossover of polymer electrolyte membrane fuel cells [J]. International Journal of Hydrogen Energy, 2011, 36(16): 9916-9925. [17] Yuan X, Zhang S, Wang H, et al. Degradation of a polymer exchange membrane fuel cell stack with Nafion® membranes of different thicknesses: Part I. In situ diagnosis [J]. Journal of Power Sources, 2010, 195(22): 7594-7599. [18] Zhang H, Li J, Tang H, et al. Hydrogen crossover through perfluorosulfonic acid membranes with variable side chains and its influence in fuel cell lifetime [J]. International Journal of Hydrogen Energy, 2014, 39(28): 15989-15995. [19] Cheng X, Zhang J, Tang Y, et al. Hydrogen crossover in high-temperature PEM fuel cells [J]. Journal of Power Sources, 2007, 167(1): 25-31. [20] Pei P, Xu H, Zeng X, et al. Use of galvanostatic charge method as a membrane electrode assembly diagnostic tool in a fuel cell stack [J]. Journal of Power Sources, 2014, 245: 175-182. |
相关文章:
|