删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
清华大学交叉信息研究院导师教师师资介绍简介-宋祎璞
本站小编 Free考研考试/2020-04-16
清华大学交叉信息研究院 宋祎璞
职务: 研究员
Email:
地址: 北京市清华大学蒙民伟科技南楼309
电话: 8
I am currently a researcher fellow at the Institute for Interdisciplinary Information Science (IIIS), Tsinghua University. I received my PhD in Physics from Peking University in 2005, where I was trained in the nanofabrication and transport measurement in the electron microscopy laboratory. I was a post-doc from 2006-2007 at the University of Wisconsin-Madison, where I worked on spintronics nanodevices. In 2007, I moved to Michigan State University as a research associate, focusing on an experimental approach to acceptor-based quantum computing. From 2009 to 2012, I worked as a postdoctoral research fellow at the Institute for Quantum Computing, University of Waterloo, where my research was focused on single-electron devices for spin-based quantum information processing.
Research Interests:
My research focuses on the superconducting qubit and mesoscopic investigation of transport phenomena in quantum systems for quantum computing.
Current ResearchProjects:
(1) Scalable superconducting qubit system
We have proposed a new architecture of scalable superconducting qubits based on ring network structures. All transmon qubits inside the ring are coupled to a superconducting coplanar waveguide (CPW) resonator. The entanglement of qubits inside the ring can be accomplished by the cavity-mediated cross-resonance (CR) gate. The coupling between two qubits in the two adjacent rings can be achieved via the shared transmon qubit, which serves as a flux-tunable transmon bus. This architecture design of superconducting qubits can efficiently avoid breakpoints of superconducting patterns, and significantly improve the robustness of intraconnections of qubits. Our protocol can accomplish simultaneous readout and entanglement generation in all transmon qubits inside the ring network structure. This particular architecture also has an advantage of flexibility to define faulttolerant logical qubits. Our goal is to implement a fault-tolerant operating scheme with fourteen transmon qubits, which support reliable logical qubits and universal gates.
(2)Hybrid superconducting system
Based on our proposed hybrid superconducting qubit system, we plan to investigate an experimental approach to directly couple a transmon qubit to an individual spin in the nitrogen-vacancy (NV) center. Our simulation result indicate that, the coupling rate between the transmon and NV spin can be three orders of magnitude larger than that for a single spin coupling to a microwave cavity, which can be used to make a transmon bus, leading to coherent virtual exchange interaction among different single spins. By using a low-density NV spin ensemble, we will study the SWAP operation between the transmon and the NV spin ensemble, and achieve a quantum non-demolition measurement on the state of NV ensemble. Our experiment scheme can accomplish state exchange between the processor (transmon) and the memory (NV spin ensemble) through direct coupling between them with a much larger coupling rate without using of a cavity as the inter-media. This experiment scheme is feasible with the experimental technology because all estimated parameters are based on typical experimental values.
Publications:
1. Y.L. Ma, T.Q. Cai, X.Y. Han, Y.W. Hu, H.Y. Zhang, H.Y. Wang, L.Y. Sun, Y.P. Song*, and L.M. Duan*, Andreev bound states in a few-electron quantum dot coupled to superconductors, Phys. Rev.B, 99, 035413 (2019).
2. Y.P. Song*, Y.W. Hu, Quantum interference in InAs/InAlAs core-shell nanowires, Appl. Phys. Lett.,113,143104 (2018).
3.X.Li,Y. Ma,J. Han,Tao Chen,Y. Xu,W. Cai,H. Wang,Y. P. Song,Z.Y. Xue*,Z.Q.Yin*,L.Y. Sun*, Perfect remote quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Applied, 2018,10, 054009.
4.L.Hu,Y.W. Ma,W.Z. Cai,X.H. Mu,Y. Xu,W.T. Wang,Y.K. Wu,H.Y. Wang,Y.P. Song, C.L. Zou*,S. M. Girvin,L.M. Duan,L.Y. Sun*, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nature Phys., Accepted.
5.L.Hu,S.H. Wu,W.Z. Cai,Y.W.Ma,X.H. Mu,Y. Xu,H.Y. Wang,Y.P. Song,D.L. Deng*, C.L. Zou*,L.Y. Sun*, Quantum generative adversarial learning in a superconducting quantum circuit, Science Advances, Accepted.
6.L.Hu,X.H.Mu,W.Z. Cai,Y.W. Ma,Y. Xu,H.Y. Wang,Y.P. Song,C.L. Zou*,L.Y. Sun*, Experimental repetitive quantum channel simulation, Science Bulletin, Accepted.
7. Y.Xu, W.Z. Cai, Y.W. Ma, X.H. Mu, W. Dai, W.T. Wang, L. Hu, X.G. Li, J.X. Han, H.Y. Wang, Y.P. Song, Z.B. Yang*, S.B. Zheng*, L.Y. Sun*, Geometrically manipulating photonic Schrodinger cat states and realizing cavity phase gates, arXiv:1810.04690 [quant-ph].
8. L. Hu, Y.C. Ma, Y. Xu, W.T. Wang, Y.W. Ma, K. Liu, H.Y. Wang, Y.P. Song, M.H. Yung*, L.Y. Sun*, Simulating molecular spectroscopy with circuit quantum electrodynamics, Science Bulletin, 63, 293 (2018).
9.Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, Tao Chen, H. Wang, Y. P. Song, Zheng-Yuan Xue*, Zhang-qi Yin, and L. Sun, Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit, Phys. Rev. Lett., 121, 110501 (2018).
10.Y.W. Hu, Y.P. Song*, and L.M. Duan*, Quantum interface between a transmon qubit and spins of nitrogen-vacancy centers, Phys. Rev. A96, 062301(2017).
11. H.N. Xiong, W.T. Jiang, Y.P. Song and L.M. Duan*, Bound state properties of ABC-stacked trilayer graphene quantum dots, J. Phys. Condens Matter., 29, 215002 (2017).
12. Y.W. Hu,C.T. Ji,X.X Wang,J.R. Huo,Q. Liu, Y.P. Song*, The structural, magnetic and optical properties of TMn@(ZnO)42(TM = Fe, Co and Ni) hetero-nanostructure, Scientific Reports7, 16485 (2017).
13. W. Wang, L. Hu, Y. Xu, K. Liu, Y. Ma, S-B. Zheng*, R. Vijay, Y. P. Song, L.M. Duan*, and L.Y.Sun*, Converting quasiclassical states into arbitrary Fock state superpositions in a superconducting circuit, Phys. Rev. Lett., 118, 223604 (2017).
14. Y.P. Song*, H.N. Xiong, W.T. Jiang, H.Y. Zhang, X. Xue, C. Ma, Y.L. Ma, L.Y. Sun, H.Y. Wang, and L.M. Duan*, Coulomb oscillations in a gate-controlled few-layer graphene quantum dot, Nano Lett., 16, 6245 (2016).
15. K. Liu, Y. Xu, W. Wang, Shi-Biao Zheng, Tanay Roy, Suman Kundu, Madhavi Chand, A. Ranadive, R. Vijay, Y. P. Song, L.M. Duan* and L.Y. Sun*, A two-fold quantum delayed-choice experiment enabled by a which-path detector, Science Advances, 3, e** (2017).
16.G.W. Holloway*, Y.P. Song*, C.M. Haapamaki, R.R. LaPierre, and J. Baugh, Electron transport in InAs-InAlAs core-shell nanowires, Appl. Phys. Lett., 102, 043115 (2013).
17.N. Gupta*, Y.P. Song*, C.M. Haapamaki, U. Sinha, R.R. LaPierre and J. Baugh, Temperature dependent electron mobility in InAs nanowires, Nanotechnology, 24, 225202 (2013).
18.G.W. Holloway, Y.P. Song, C.M. Haapamaki, R.R. LaPierre, and J. Baugh*, Trapped charge dynamics in InAs nanowires, J. Appl. Phys., 113, 024511 (2013).
19.Y.P.Song* and B.Golding, Manipulation and decoherence of acceptor states in silicon, Europhysics Lett., 95, 47004 (2011).
20.Y.P.Song, A.L.Schmitt, and S.Jin*, Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts, Nano Lett., 8, 2356 (2008).
21.Y.P.Song, A.L.Schmitt, and S.Jin*, Ultralong single-crystal metallic Ni2Si nanowires with low resistivity, Nano Lett., 7, 965 (2007).
22.Y.P.Song, and S.Jin*, Synthesis and Properties of Single-Crystal Ni3Si nanowires, Appl. Phys. Lett., 90, 173122 (2007).
23.Y.P.Song, H.Z.Zhang, C.Lin, Y.W. Zhu, G.H.Li, F.H.Yang, and D.P.Yu*, Luminescence emission originating from nitrogen doping of Ga2O3 nanowires, Phys.Rev.B, 69, 075304 (2004).
24.Y.P.Song, P.W.Wang, H.Q.Lin, G.S.Tian, J.Lu, Z.Wang,Y.Zhang, and D. P. Yu*, Physical origin of the ferromagnetic ordering above room temperature in GaMnN nanowires, Journal of Physics: Condensed Matter, 17, 5073 (2005).
25.Y.P.Song, P.W.Wang, X.H.Zhang, J.Xu, G.H.Li, and D.P.Yu*, Magnetism and luminescence evolution due to nitrogen doping in manganese-gallium oxide nanowires, Phys.Lett.A, 351,302 (2006).
26.Y.P.Song, P.W.Wang, X.Y.XU, R.M.Wang, Z.Wang, G.H.Li, and D.P.Yu*, Magnetism and photoluminescence in manganese-gallium oxide nanowires with monoclinic and spinel structures, Physica E, 31,67 (2006).
27.Y.P.Song* and H.Xu, Direct current hopping conductivity in one-dimensional nanometer systems, Chin.Phys. Lett, 20,277 (2003).
28.P.W. Wang, Y.P.Song, X.Z. Zhang and D.P.Yu*, Transformation from beta-Ga2O3 to GaN nanowires via nitridation, Chin.Phys. Lett, 25,1038 (2008).
29.Z.M.Liao, J.Xu and Y.P.Song, Y. Zhang, Y.J.Xing, and D.P.Yu*, Quantum interference effect in single Pt(Ga)/C nanowire, Appl. Phys. Lett., 87,182112 (2005).
30.X.H.Zhang,Y.Zhang,Y.P.Song, and D.P.Yu*, Optical properties of ZnS nanowires synthesized via simple physical evaporation, Physica E, 28, 1 (2005).
31.H.Xu*, Y.P.Song and X.M.Li, Hopping conductivity studies on one-dimensional disordered systems, Acta.Phys, 51, 143 (2002) (in Chinese).
32.H.Xu* and Y.P.Song, Study of AC hopping conductivity on one-dimensionalnanometer systems, Chin.Phys., 11, 1294 (2002).
33.H.Xu* and Y.P.Song, AC Hopping conductivity studies on one-dimensional disorderedsystems, Acta.Phys, 51, 1798 (2002) (in Chinese).
34.H.Xu*, Y.P.Song and X.M.Li, Conduction mechanism studies on electron transfer of disordered system, Journal of Central South University, 9,134(2002).
35.H.Xu*, Y.P.Song and Y.F.Li, The electronic structure of one-dimension nanometer system, Journal of Central South University, 33,107(2002) (in Chinese).
36.S.Jin, A.L.Schmitt, and Y.P.Song, Metal silicide nanowires and methods for their production, United States Patent, Patent No.: US 7,803,707 B2 (2010).
Research funding:
1. Grant funding from the Natural Science Foundation of China under Grant No.**, 2018.
2. Grant funding from the State's Key Project of Research and Development Plan under Grant No.2016YFA**, 2016.
相关话题/清华大学 信息
清华大学交叉信息研究院导师教师师资介绍简介-王海艳
清华大学交叉信息研究院 王海艳 职务: 助理研究员 Email: Education Background ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学交叉信息研究院导师教师师资介绍简介-周子超
清华大学交叉信息研究院 周子超 职务: 副研究员 Email: ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学交叉信息研究院导师教师师资介绍简介-张宏毅
清华大学交叉信息研究院 张宏毅 方向: 复合固态量子系统的制备 职务: 助理研究员 Email: ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学交叉信息研究院导师教师师资介绍简介-姚麟(拟入职)
清华大学交叉信息研究院 姚麟(拟入职) 职务: 副研究员 Email: ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学交叉信息研究院导师教师师资介绍简介-赵诞
清华大学交叉信息研究院 赵诞 职务: 助理研究员 Email: 研究方向:结构生物学,表观遗传学,生物化学,细胞生物学教育背景:2018/10 至今 助理研究员 清华大学 交叉信息 ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学脑与智能实验室导师教师师资介绍简介-陈 峰
陈 峰 博士 清华大学自动化系教授/清华大学人工智能研究院副院长,自动化系副系主任 2011.12 - 现在 清华大学自动化系 长聘教授 2009.02 - 2009.09 卡内基梅隆大学 访问 2003.12 - 2011.12 清华大学自动化系 副教授 2000.04 - 2003.12 清华大学自动化系 助理教授 1996.09 - 2000.04 清华大学自动化系 博士 1994. ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学脑与智能实验室导师教师师资介绍简介-ChristieStella
Christie Stella 博士 清华大学心理学系 长聘副教授 2018-现在 清华大学心理学系 长聘副教授 2018-现在 美国斯沃斯莫尔学院 长聘副教授 2015 - 2016 美国斯坦福大学 访问 2012 - 2018 美国斯沃斯莫尔学院 助理教授 2010 - 2012 英属哥伦比亚大学 博士后 2004 - 2010 美国西北大学 认知心理学博士 1999 - 2004 哈 ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学脑与智能实验室导师教师师资介绍简介-胡晓林
胡晓林 博士 清华大学计算机科学与技术系 副教授 2013.12 -现在 清华大学计算机科学与技术系 副教授 2009.09 - 2013.11 清华大学计算机科学与技术系 助理研究员 2007.09 - 2009.08 清华大学计算机科学与技术系 博士后 2004.08 - 2007.07 香港中文大学机械与自动化系 博士 2001.09 - 2004.06 武汉理工大学汽车工程学院 硕 ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学脑与智能实验室导师教师师资介绍简介-高小榕
高小榕 博士 清华大学医学院 教授 2013 - 现在 清华-IDG/麦戈文脑科学研究院 研究员 2004 - 现在 清华大学医学院生物医学工程系 教授 1995 - 2003 清华大学医学院生物医学工程系 副教授 1992 - 1995 清华大学电机系 讲师 1989 - 1992 清华大学生物医学工程专业 工学博士 1986 - 1989 北京协和医科大学 医学硕士 1981 - 19 ...清华大学考研导师 本站小编 Free考研考试 2020-04-16清华大学脑与智能实验室导师教师师资介绍简介-贾怡昌
贾怡昌 博士 清华大学医学院 研究员 2014 - 现在 清华-IDG/麦戈文脑科学研究院、清华-北大生命联合中心 研究员 2013 - 现在 清华大学基础医学系 助理教授 2007 - 2012 美国霍华德·休斯医学研究所杰克逊实验室 博士后 2001 - 2006 中国科学院上海生命科学研究院神经科学研究所 博士 1998 - 2001 南京医科大学 硕士 研究兴趣和领域 研究学习记 ...清华大学考研导师 本站小编 Free考研考试 2020-04-16