删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

清华大学土木水利学院导师教师师资介绍简介-赵志宏

本站小编 Free考研考试/2020-04-14

职称:副教授,博导
通信地址:北京市海淀区清华大学土木馆(何善衡楼)401
邮编:100084
电话:
Email:zhzhao@tsinghua.edu.cn 通信地址:北京市海淀区清华大学土木工程系
邮编:100084
电话号码:
E-mail:fanjsh@tsinghua.edu.cn
-->
个人主页
https://zhihong.weebly.com/
教育背景
2008.10 - 2011.11 瑞典皇家工学院 工程地质 博士
2005.09 - 2008.01 北京科技大学 岩土工程 硕士
2001.09 - 2005.07 北京科技大学 土木工程 学士
工作履历
2014.02 - 清华大学 土木工程系 讲师、助理教授、副教授、博导
2011.12 - 2014.06 斯德哥尔摩大学 地质科学系 博士后
2006.12 - 2008.09 香港理工大学 土木与结构工程系 研究助理
开设课程
1. 海绵城市导论(本科生)
2. 地下空间开发利用概论(本科生、合讲)
3. 科技论文写作与交流(研究生)
研究领域
岩石力学(裂隙岩体中THMC多场耦合)
地下工程(地热开发、核废料处置、深埋隧道)
数值方法(离散元、颗粒元)
科研项目
国家自然科学基金面上项目:水-岩作用下岩石裂隙的多尺度劣化规律与抗剪强度准则研究 (2018-2021)
国家自然科学基金重点项目:蓄水初期特高拱坝及山体异常变形的机制与控制(子课题,2018-2022)
国家重点研发计划课题:枢纽工程重要构筑物(群)与地质环境互馈作用机制与控制技术(子课题,2018-2021)
国家自然科学基金青年项目:增强型地热系统(EGS)裂隙岩体渗流传输特性的温度效应及离散元模拟研究(2016-2018)
清华大学自主科研青年项目:极深超大隧洞围岩稳定性及控制技术(2015-2018)
北京市自然科学基金面上项目:北京地热田储层渗透性对回灌的响应机理研究及应用(2015-2017)
学术兼职
SCI期刊Rock Mechanics and Rock Engineering (IF=2.819) 编委
SCI期刊Computers and Geotechnics (IF=3.138) 编委
ISRM Commission on Coupled Thermal-Hydro-Mechanical-Chemical Processes in Fractured Rock 委员
中国岩石力学与工程学会岩体数学模拟专业委员会 副秘书长
中国岩石力学与工程学会废物地下处置专业委员会 委员
中国岩石力学与工程学会青年工作委员会 委员
能源行业地热能专业标准化技术委员会 专家
中国岩石力学与工程学会主办的《岩石力学与工程学报》(英文)的科学编辑
奖励与荣誉
2018,国土资源科学技术一等奖
2018,第十届中国岩石力学与工程学会青年科技奖
2017,第二届全国青年岩土力学与工程创新创业大赛三等奖
2017,第四届国际青年岩石力学会议(韩国)奖学金
2015,中国科协青年人才托举计划,
2014,北京市优秀人才培养资助(青年骨干),地下工程与隧道方向
2011,国家优秀自费留学生奖学金,国家留学基金委
学术成果
1、Book chapter
Zhao Z. 2017. Application of discrete element approach in fractured rock masses. In: Shao J. and Shojaei A (eds), Porous Rock Failure Mechanics: with Application to Hydraulic Fracturing, Drilling and Structural Engineering. Elsevier. pp 145-176.

2、期刊论文(*通讯作者)
[1]Liu Z., Xu H., Zhao Z.*, Chen Z. 2018. DEM modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale. Rock Mechanics and Rock Engineering (online publication)
[2]Wang G., Liu G., Zhao Z.*, Liu Y., Pu H. 2019. A robust numerical method for modeling multiple wells in city-scale geothermal field based on simplified one-dimensional well model. Renewable Energy. 139: 873-894.
[3]Zhao X.G., Xu H.R., Zhao Z.*, Guo Z., Cai M., Wang J. 2019. Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences. 115: 121-136.
[4]Liu G., Pu H., Zhao Z.*, Liu Y. 2019. Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs. Energy. 171: 631-653.
[5]Zuo J., Li Y., Zhang X., Zhao Z., Wang T. 2018. The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures. Rock Mechanics and Rock Engineering. 51: 3439-3454.
[6]Zhao Z.*, Guo T., Ning Z., Dou Z., Dai F., Yang Q. 2018. Numerical modeling of stability of fractured reservoir bank slopes subjected to water-rock interactions. Rock Mechanics and Rock Engineering. 51: 2517-2531.
[7]Zhao X., Zhao Z., Guo Z., Cai M., Li X., Li P-F., Chen L., Wang J. 2018. Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mechanics and Rock Engineering. 51: 2055-2074.
[8]Zhao Z.*, Peng H., Wu W., Chen Y-F. 2018. Characteristics of shear-induced asperity degradation of rock fractures and implications for solute retardation. International Journal of Rock Mechanics and Mining Sciences. 105: 53-61.
[9]Wang Y., Song E.-x., Zhao Z.* 2018. Particle mechanics modeling of the effect of aggregate shape on creep of durable rockfills. Computers and Geotechnics. 98: 114-131.
[10]Zhao Z.*, Liu Z., Pu H., Li X. 2018. Effect of Thermal Treatment on Brazilian Tensile Strength of Granites with Different Grain Size Distributions. Rock Mechanics and Rock Engineering. 51: 1293-1303.
[11]Zhao Z.*, Yang J., Zhou D., Chen Y. 2017. Experimental investigation on the wetting-induced weakening of sandstone joints. Engineering Geology. 225: 61-67.
[12]Wu W., Zhao Z., Duan K. 2017. Unloading-induced instability of a simulated granular fault and implications for excavation-induced seismicity. Tunnelling and Underground Space Technology. 63: 154-161.
[13]Zhao Z.*, Yang J., Zhang D., Peng H. 2017. Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content. Rock Mechanics and Rock Engineering. 50: 485-491.
[14]Zhao Z.*, Zhou D. 2016. Mechanical properties and failure modes of rock samples with grout-infilled flaws: A particle mechanics modeling. Journal of Natural Gas Science and Engineering. 34: 702-715.
[15]Luo S., Zhao Z.*, Peng H., Pu H. 2016. The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks. International Journal of Rock Mechanics and Mining Sciences. 87: 29-38.
[16]Kleine B.I., Zhao Z., Skelton A. 2016. Rapid fluid flow along fractures at greenschist-faices conditions on Syros, Greece. American Journal of Science. 316: 169-201.
[17]Zhao Z*. 2016. Thermal influence on mechanical properties of granite: A micro-cracking perspective. Rock Mechanics and Rock Engineering. 49: 747-762.
[18]Li B., Zhao Z., Jiang Y., Jing L. 2015. Contact mechanism of a rock fracture subjected to normal loading and its impact on fast closure behavior during initial stage of fluid flow experiment. International Journal for Numerical and Analytical Methods in Geomechanics. 39: 1431-1449.
[19]Zhao Z.*, Song E-x. 2015. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions. Computers and Geotechnics. 68: 137-146.
[20]Zhao Z.*, Li B., Jiang Y. 2014. Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks. Rock Mechanics and Rock Engineering. 47: 2279-2286.
[21]Zhao Z.*, Skelton A. 2014. An assessment of the role of non-linear reaction kinetics in parameterization of metamorphic fluid flow. Journal of Geophysical Research: Solid Earth. 119: 6249-6262.
[22]Zhao Z.* 2014. On the heat transfer coefficient between rock fracture walls and flowing fluid. Computers and Geotechnics. 59: 105-111.
[23]Zhao Z.*, Liu L., Neretnieks I., Jing L. 2014. Solute transport in a single fracture: impacted by chemically mediated changes. International Journal of Rock Mechanics and Mining Sciences. 66: 69-75.
[24]Zhao Z.*, Jing L., Neretnieks I., Moreno L. 2014. A new numerical method of considering local longitudinal dispersion in single fractures. International Journal for Numerical and Analytical Methods in Geomechanics. 38: 20-36.
[25]Bidgoli M.N., Zhao Z., Jing L. 2013. Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering. 5: 419-430.
[26]Zhao Z.* 2013. Gouge particle evolution in a rock fracture undergoing shear: A microscopic DEM study. Rock Mechanics and Rock Engineering. 46: 1461-1479.
[27]Zhao Z.*, Skelton A. 2013. Simultaneous calculation of metamorphic fluid fluxes, reaction rates and fluid-rock interaction timescales using a novel inverse modeling. Earth and Planetary Science Letters. 373: 217-227.
[28]Zhao Z.*, Rutqvist J., Leung C., Hokr M., Liu Q., Neretnieks I., Hoch A., Havlí?ek J., Wang Y., Wang Z., Wu Y., Zimmerman R. 2013. Impact of stress on solute transport in a fracture network: A comparison study. Journal of Rock Mechanics and Geotechnical Engineering. 5: 110-123.
[29]Jing L., Min K.B., Baghbanan A., Zhao Z. 2013. Understanding coupled stress, flow and transport processes in fractured rocks. Geosystem Engineering. 16: 2-25.
[30]Cheng Y.M., Zhao Z., Sun Y.J. 2012. Closure to “Evaluation of Interslice Force Function and Discussion on Convergence in Slope Stability Analysis by the Lower Bound Method” by Y.M. Cheng, Z.H. Zhao, and Y.J. Sun. Journal of Geotechnical and Geoenvironmental Engineering. 138: 562.
[31]Zhao Z.*, Jing L., Neretnieks I. 2012. Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures. International Journal of Rock Mechanics and Mining Sciences. 52: 92-102.
[32]Zhao Z.*, Jing L., Neretnieks I., Moreno L. 2011. Analytical solution of coupled stress-flow-transport processes in a single fracture. Computers and Geosciences. 37: 1437-1449.
[33]Zhao Z.*, Jing L., Neretnieks I., Moreno L. 2011. Numerical modeling of stress effects on solute transport in fractured rocks. Computers and Geotechnics. 38: 113-126.
[34]Cheng Y.M., Zhao Z., Sun Y.J. 2010. Evaluation of interslice force function and discussion on convergence in slope stability analysis by the lower bound method. Journal of Geotechnical and Geoenvironmental Engineering. 136: 1103-1113.
[35]Zhao Z.*, Jing L., Neretnieks I. 2010. Evaluation of hydrodynamic dispersion parameters in fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering. 2: 243-254.
[36]赵志宏,刘桂宏,谭现锋,张平平. 2017. 基于等效渗流通道模型的地热尾水回灌理论模型. 水文地质工程地质. 44: 158-164.
[37]郭铁成,赵志宏*. 2016. 节理粗糙度影响下岩体开挖损伤区分布规律. 地下空间与工程学报. 12, Z2: 656-662.
[38]周栋,赵志宏*. 2016. 高应力区大尺度隧洞开挖损伤区范围预测研究. 岩体工程学报. 38, Z2: 67-72.
[39]赵志宏*, 井兰如, 宋二祥. 裂隙岩体中力学-渗流-传输耦合离散元模拟. 地下空间与工程学报. 2014, 10: 1023-1029.
[40]郑榕明, 赵志宏, 王金安. 潘家铮极值原理的优化算法实现. 岩石力学与工程学报. 2008. 27: 93-96.
[41]王金安, 赵志宏, 侯志鹰. 浅埋坚硬覆岩下开采地表塌陷机理研究. 煤炭学报. 2007. 32: 1051-1056.
[42]赵志宏, 王金安. 锚网支护巷道自动设计系统研究与工程应用. 中国矿业. 2006. 15: 48-51.

3、会议论文
[1]Zhao Z., Liu G. 2018. An integrated reservoir and well model for geothermal field. The International Conference on Coupled Processes in Fractured Geological Media: Observation, Modeling, and Application, Wuhan, China.
[2]Dou Z., Zhao Z., Cheng J. 2018. Shear behavior of granite fractures undergoing thermal treatments. The International Conference on Coupled Processes in Fractured Geological Media: Observation, Modeling, and Application, Wuhan, China.
[3]Zhao Z., Zhao X. 2018. Thermally-induced microcracking in granites: insights from SEM observation and DEM modeling. The 10th Asian Rock Mechanics Symposium, Singapore.
[4]Zhao X., Wang J., Chen L., Zhao Z. 2018. Experimental investigations on the thermal conductivity characteristics of Beishan granite after thermal treatment. The 10th Asian Rock Mechanics Symposium, Singapore.
[5]Zhao Z., Peng H. 2018. Characteristics of regular rock joint damage induced by shear. The 3rd International Conference on Damage Mechanics Shanghai, China.
[6]Zhao Z., Peng H. Luo S., Li B. 2018. Coupled TH processes in rough fractured reservoirs. The 2nd International Discrete Fracture Network Engineering Conference, Seattle, Washington, USA.
[7]Liu G., Zhao Z., Pu H., Tan X. 2017. Coupled thermo-hydro-mechanical modeling on tail water reinjection in heterogeneous porous geothermal reservoirs. The 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics (15th IACMAG), Wuhan, China.
[8]Li X., Zhao Z., Zhao X. 2017. Particle mechanics modeling of thermal effects on shear behavior of granite fractures. The 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics (15th IACMAG), Wuhan, China.
[9]Zhao Z., Peng H. 2017. Experimental study of effects of asperity degradation on the solute retardation coefficient in granite fractures. YSRM2017 & 5th NDRM, Jeju, Korea.
[10]Guo T., Zhao Z. 2017. Effect of joint surface roughness on the excavation damaged zone in jointed rocks. EURO:TUN, Innsbruck University, Austria.
[11]Zhao Z., Zhou D. Pu H. 2016. Shear behavior of heat-treated fractures in Beishan granite. ARMS9, Bali, Indonesia.
[12]Zhao Z. 2016. DEM modeling of creep behavior of rockfill materials. The 2016 Would Congress on Advances in Civil, Environmental and Materials Research, Jeju, Korea.
[13]Zhou D., Zhao Z. 2016. DEM modeling of crack coalescence in rock specimens with two infilled flaws. DEM7, Dalian, China.
[14]Zhou D., Zhao Z. 2016. Particle mechanics modeling of brittle behavior of rock specimens with an infilled flaw. Geosafe2016, Xian, China.
[15]Zhao Z., Li B. 2015. On the role of fracture surface roughness in fluid flow and solute transport through fractured rocks. In: ISRM2015, Montreal, Canada.
[16]Zhao Z. 2014. Insights from DEM Modeling of Thermal Effects on Mechanical Properties of Crystalline Rocks. ARMS8, Sapporo.
[17]Zhao Z. 2013. Discrete element simulation of fracture surface damage and gouge particle evolution in a rock fracture segment. SinoRock2013, Shanghai, pp385-390.
[18]Jing L., Koyama T., Zhao Z., Li B. 2013. Stress and shear effects on fluid flow and solute transport in rock fractures. SinoRock2013, Shanghai, pp33-44.
[19]Zhao Z., Jing L., Neretnieks I. 2010. Stress effects on nuclide transport in fractured rocks: a numerical study. In: Proceeding of European rock mechanics symposium (EUROCK2010), Lausanne, Switzerland, pp783-786.
[20]Vesipa R., Zhao Z., Jing L. 2009. Estimating hydraulic permeability of fractured crystalline rocks using geometrical parameters. In: The 9th international conference on analysis of discontinuous deformation (ICADD9), Singapore, pp685-692.
1978.3 – 1982.1 湖南大学土木工程系(工业与民用建筑专业) 工学学士
1982.2 – 1984.12 郑州工学院土木建筑工程系(结构工程专业) 工学硕士
1989.2 – 1991.12 南斯拉夫铁托格勒大学土木工程学院(结构工程专业)技术科学博士
-->



相关话题/水利 土木